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KEY PO INT S

• CD20/CD3 bispecific
antibody enhances the
efficacy of CD19–
directed CAR T cells.

• Combination treatment
improved survival in the
Eμ-TCL-1 mouse model.
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Relapse after anti-CD19 chimeric antigen receptor (CD19-CAR) occurs in a substantial pro-
portion of patients with lymphoid malignancies. We assessed the potential benefits of co-
administering CD20-targeting bispecific antibodies (CD20-BsAbs) with CD19-CAR T cells
with the aim of enhancing immunotherapeutic efficacy. Addition of CD20-BsAbs to cocul-
tures of CD19-CARs and primary samples of B-cell malignancies, comprising malignant B cells
and endogenous T cells, significantly improved killing of malignant cells and enhanced the
expansion of both endogenous T cells and CD19-CAR T cells. In an immunocompetent mouse
model of chronic lymphocytic leukemia, relapse after initial treatment response frequently
occurred after CD19-CAR T-cell monotherapy. Additional treatment with CD20-BsAbs
significantly enhanced the treatment response and led to improved eradication of malignant cells. Higher efficacy was
accompanied by improved T-cell expansion with CD20-BsAb administration and led to longer survival with 80% of the
mice being cured with no detectable malignant cell population within 8 weeks of therapy initiation. Collectively, our
in vitro and in vivo data demonstrate enhanced therapeutic efficacy of CD19-CAR T cells when combined with CD20-
BsAbs in B-cell malignancies. Activation and proliferation of both infused CAR T cells and endogenous T cells may
contribute to improved disease control.
Introduction
Chimeric antigen receptor (CAR) T cells targeting the B-cell
lineage marker CD19 have greatly improved the outcome in
patients with relapsed/refractory B-cell malignancies, which
led to the approval of several CAR T-cell therapies for these
patients.1-3 However, patients who had incomplete
responses after CAR T-cell therapy are especially prone to
disease progression or relapse.4,5 This failure to respond has
been linked to molecular alterations within the tumor, for
example, loss of target antigen expression.6,7 Moreover,
limited persistence of CAR T cells, for instance, because of
T-cell exhaustion, has been associated with an inferior clinical
response.8,9
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Previous studies suggested that there were potential benefits to
cotargeting multiple tumor-associated antigens to prevent
antigen escape. Although CAR T cells that target both CD19
and CD20 have demonstrated efficacy in vitro10,11 and
in vivo,12,13 limited CAR T-cell expansion remains associated
with poor outcomes.12,13 An alternative strategy to dual tar-
geting might be the combination of CAR T cells with bispecific
antibodies (BsAbs). Sequencing these 2 treatment strategies is
currently being tested for patients with relapsed/refractory
multiple myeloma or diffuse large B-cell lymphoma in several
clinical trials and is showing meaningful clinical benefit with
durable response rates.14,15 Because BsAbs that target CD20
and CD3 (CD20-BsAb) induce killing of B cells by recruiting
autologous infiltrating T cells,16 we hypothesized that the
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Figure 1. CD20-BsAbs increase killing by expansion of CD19-CAR T cells in vitro. (A) The percentage of viable lymphoma cells and x-fold expansion of T cells in cocultures
of B-cell lymphoma cell lines and CD19-CAR or NT T cells in the presence or absence of 100 ng/mL CD20-BsAb are shown for 46 different cell lines. (B) The cellular
composition is shown for primary B-cell malignancy samples from patients as determined by flow cytometry. Samples are ordered by decreasing T-cell content (n = 24
samples). The percentage of viable lymphoma cells (C), x-fold expansion of endogenous T cells (D), and x-fold expansion of added CD19-CAR or NT T cells (E) in cocultures
with primary B-cell malignancy samples in the presence or absence of 100 ng/mL (low concentration) or 1000 ng/mL (high concentration) CD20-BsAb are shown for n = 24
samples. Cocultures were performed using an effector (E) to target (T) cell ratio of 0.2:1. The percentage CD25+, GrB+, and Ki67+ T cells among CD4+ or CD8+ endogenous
(F) or CD19-CAR or NT (G) T cells in the presence or absence of 1000 ng/mL CD20-BsAb in n = 24 samples. P values were calculated using the 2-sided, paired Wilcoxon test
(A,C-G). ***P ≤ .001, **P ≤ .01, *P ≤ .05. ns, not significant.
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addition of CD20-BsAbs will complement treatment with CD19-
targeting CAR T cells (CD19-CAR) by promoting CAR T-cell
expansion and simultaneously exploiting the activity of
endogenous T cells.
Study design
A detailed description is provided in the supplemental
Materials, available on the Blood website.

CAR T-cell and BsAb combination in human in vitro
and ex vivo models
Human B-cell lymphoma lines or primary lymph node–derived
samples (supplemental Tables 1 and 2) were cocultured with
third-generation CD19-CAR17 or nontransduced (NT) T cells.
For the combination experiments with CD20-BsAbs (Gen-
entech), the indicated concentrations of CD20-BsAb or solvent
control were added to the cocultures. Cell suspensions were
analyzed using flow cytometry.

CAR T-cell and BsAb combination in the murine Eμ-
TCL1 model
The fully immunocompetent Eμ-TCL118 adoptive transfer model
of chronic lymphocytic leukemia (CLL)19 was used to evaluate
murine second-generation anti-CD19 CAR T cells20 in combi-
nation with CD20-BsAbs (bAb0185, absolute antibody) in vivo.
After engraftment of TCL1-CLL cells and partial lymphodeple-
tion through sublethal irradiation, mice were intravenously
injected with CAR or NT T cells. CD20-BsAbs were adminis-
tered weekly by intravenous injections starting 1 week after
CAR T-cell injection. Disease progression was monitored in
peripheral blood and lymphoid tissues by flow cytometry.

This study was approved by the ethics committee of the Uni-
versity of Heidelberg and was conducted in accordance with
the Declaration of Helsinki. Informed consent was obtained
from all patients in advance.
Results and discussion
We evaluated the efficacy of third-generation CD19-CAR
T cells, which showed in vivo activity that was comparable
with second-generation CD19-CAR T cells,17 and combined
them with CD20-BsAbs in vitro. Therefore, we cocultured 46
Figure 2. CD20-BsAb enhance in vivo antitumor efficacy of CD19-CAR T cells in th
presented. C57BL/6 mice (n = 10 mice per group) were transplanted with 107 Eμ-TCL1 s
through weekly blood withdrawals. After CLL establishment (median of 60% CLL cells of
with sublethal 4 Gy irradiation (day 0). Injection with 106 CD19-CAR or NT T cells was perf
therapy was initiated the following week (day 8). Summarized frequency in blood (B) and
treatment. In panel B, 3 mice reached end point criteria before the day 26 analysis (comp
panel C, the symbols represent end point analysis. The number of surviving mice 60 da
graphs. The absolute concentrations are shown on pseudo-log scale to allow the plotting
treated with CD19-CAR T-cell and CD20-BsAb combination therapy, the respective mono
BsAb treatment start (day 8) on total T-cell concentration are shown. The absolute T-cell c
12 (left). In addition, the endogenous and endothelial growth factor receptor+ CAR T-ce
CD19-CAR T-cell engraftment and expansion as monotherapy (CAR + PBS) and in combin
with relapsing mice shown in black and cured mice shown in the respective colors. (G) A se
8 CAR with BsAb animals following the same timeline and treatment schedule as outlined
blood and lymphoid organs 2 days after the first BsAb treatment dose (day 10) (supplem
(proliferation), and GrB (degranulation) in endogenous CD8+ and CD8+ CAR T cells were
positive cells (right) are shown. For panel B, the 1-way analysis of variance with Tukey’s
Mantel-Cox log-rank test was used. For panels F-G, unpaired t tests were used. In pane

BISPECIFIC ANTIBODIES IMPROVE CAR T-CELL RESPONSE
human B-cell lymphoma lines from different entities
(supplemental Figure 1A,C; supplemental Table 1) with either
CD19-CAR T cells or NT control T cells derived from 1 healthy
donor with or without CD20-BsAbs. CD20-BsAbs increased the
expansion of CD19-CAR T cells, however, the killing of lym-
phoma cells was not significantly affected. In contrast, CD20-
BsAbs induced killing of lymphoma cells in cocultures with NT
T cells while enhancing their expansion, indicating that CD20-
BsAbs successfully activated non-CAR–transduced T cells
(Figure 1A). Considering the cellular makeup of lymphomas,
which encompasses both malignant B cells and endogenous
T cells, we hypothesized that CD20-BsAbs could complement
CAR T-cell–mediated killing by inducing antitumor cytotoxicity,
mediated by endogenous T cells, in an autologous ex vivo
setting.21 We therefore assessed the combination of CD19-CAR
T cells and CD20-BsAbs in 24 primary lymph node–derived
samples of different B-cell malignancies comprising different
proportions of endogenous T cells that were collected either at
initial diagnosis (n = 14) or at relapse (n = 10) (Figure 1B;
supplemental Figure 1B,D; supplemental Table 2). In cocultures
with CD19-CAR T cells, CD20-BsAbs significantly improved the
killing of malignant B cells (Figure 1C) while enhancing the
expansion of both endogenous T cells and CAR T cells
(Figure 1D-E). Of note, irrespective of the presence of CD20-
BsAbs, expansion of endogenous T cells was higher in cocul-
tures with CAR T cells than with NT T cells, indicating that the
presence of CAR T cells provided a benefit to endogenous
T cells.

To determine whether the observed improvement in tumor cell
killing by CD20-BsAbs was because of endogenous T cells or
CAR T cells or both, we quantified the proportions of activated,
endogenous, or added CD4+ and CD8+ T cells by measuring
the frequencies of CD25+, CD69+, granzyme B (GrB)+, and
Ki67+ T cells (Figure 1F-G; supplemental Figure 2). Interest-
ingly, the mere presence of CAR T cells increased the propor-
tion of CD25+, GrB+, and Ki67+ endogenous CD4+ and CD8+

T cells. Together with the observed increase in endogenous
T-cell expansion, these results are in line with previous findings
that demonstrated activation of endogenous non-CAR–trans-
duced T cells in patients with diffuse large B-cell lymphoma
following CAR T-cell transfusion.22 More importantly, CD20-
BsAbs further increased the proportion of activation and prolif-
eration marker-positive endogenous T cells, suggesting that they
complemented CAR T-cell–mediated killing in combination
e Eμ-TCL1 mouse model of CLL. (A) A schematic overview of the in vivo study is
plenocyte–derived CLL cells intravenously, and disease progression was monitored
CD45+ leukocytes and >1000 CLL cells per μL in blood), the mice were conditioned
ormed 24 hours later (day 1). Weekly CD20-BsAb or phosphate-buffered saline (PBS)
absolute concentration (C) of CD5+ CD19+ CLL cells per mouse before and during
are panel F) and the remaining mice are summarized without statistical analyses. In
ys after therapy initiation in each treatment group are indicated on the respective
of mice without detectable cancer cells. (D) The Kaplan-Meier survival curves of mice
therapies, and the NT T cells with PBS controls are shown. (E) The effects of CD20-
oncentrations in the blood of NT and CAR T-cell injected mice are depicted for day
ll expansion in blood are shown separately for CAR T-cell injected mice (right). (F)
ation with CD20-BsAb. The concentration of CD8+ CAR in blood is shown over time
cond independent treatment study was performed with n = 7 CAR with PBS and n =
in panel A. The initial response of T cells to BsAb therapy was assessed by analysis of
ental Figure 7). Expression of CD69 (activation), PD-1 (activation/exhaustion), Ki67
analyzed by flow cytometry. Exemplary histograms (left) and frequencies of marker-
honest significant difference multiple comparison test was used. For panel D, the
l G, ns is not shown. ***P ≤ .001, **P ≤ .01, *P ≤ .05. ns, not significant.
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therapy (Figure 1F). In case of CAR T cells, the percentage of
GrB+ and Ki67+ CAR T cells was close to 100%, indicating strong
activation in the monotherapy. Consequently, CD20-BsAbs did
not further enhance the expression of these markers and only led
to a significant increase in the proportion of CD25+ and CD69+

CAR T cells (Figure 1G; supplemental Figure 2B). Combining
CD19-BsAbs with CD19-CAR T cells led to similar beneficial
effects (supplemental Figure 3), emphasizing the importance of
enhancing endogenous T-cell activation instead of targeting 2
antigens. Nevertheless, targeting different antigens may have
additional positive effects, such as reducing the risk for treatment
resistance caused by antigen loss.23

Collectively, these data suggest that CD20-BsAbs complement
CAR T-cell–mediated killing of malignant B cells ex vivo by (1)
recruiting and activating endogenous T cells and (2) supporting
activation and proliferation of CAR T cells.

We subsequently evaluated the combination of CD19-CAR
T cells and CD20-BsAbs in vivo in the fully immunocompetent
Eμ-TCL1 mouse model of CLL.18 The efficacy of murine CD19-
CAR T cells and CD20-targeting BsAbs was first confirmed
in vitro (supplemental Figure 4). The combination therapy in vivo
was then compared with both monotherapies and with a control
group injected with NT T cells (Figure 2A). After the initial
reduction in CD5+CD19+ malignant cells in the blood owing to
the sublethal irradiation required for conditioning mice to CAR
T-cell therapy, both CD19-CAR T-cell and CD20-BsAb mono-
therapy significantly reduced the CLL cell counts in the blood
when compared with the control. By using suboptimal treatment
conditions, most mice in both monotherapy groups rapidly
relapsed and reached high CLL frequencies in the blood within 2
to 5 weeks after therapy initiation (Figure 2B-C; supplemental
Figure 5A). Response in the CAR T-cell monotherapy group
was heterogeneous and resembled the clinical performance of
CD19-CAR T-cell therapy in patients with CLL.24

Importantly, combining CD19-CAR and CD20-BsAbs led to
improved eradication of malignant cells and was significantly
more effective than either of the monotherapies alone. In 80%
of mice in the combination group and in 20% of the CD19-CAR
T-cell monotherapy–treated animals, the malignant cell popu-
lation was permanently depleted under therapy, suggesting
cure in this murine CLL model (Figure 2B-C; supplemental
Figure 5B). Accordingly, combining CD19-CAR T-cell therapy
with BsAb therapy significantly enhanced the survival of mice
when compared with either monotherapy (Figure 2D). Of note,
monotherapy with BsAbs led to a relative redistribution of
cancer cells toward lymph nodes (supplemental Figure 5E-F),
suggesting lower efficacy of CD20-BsAbs in this tissue.

To further elucidate the mode of action, we quantified T-cell
abundance in the blood after initiation of CD20-BsAb therapy.
Irrespective of CAR T-cell injection, the administration of BsAbs
induced initial expansion of total T cells when compared with
the corresponding phosphate-buffered saline controls
(Figure 2E; supplemental Figure 5C). CAR T-cell abundance in
peripheral blood peaked within 2 weeks after infusion. BsAb
therapy initiated within this timeframe supported the expansion
of not only endogenous T cells but also CAR T cells with higher
CAR abundance, especially in the CD8+ T-cell compartment
(Figure 2E-F; supplemental Figure 5D). Mice that experienced
788 15 AUGUST 2024 | VOLUME 144, NUMBER 7
relapse later during therapy tended to show low CAR T-cell
frequencies in the blood at early time points, underlining the
importance of in vivo CAR expansion for therapeutic efficacy.8

Of interest, survivor mice were resistant to rechallenge with
CLL irrespective of BsAb continuation (supplemental Figure 6).

We performed phenotypic and functional analysis of T cells 2
days after the initial BsAb treatment (supplemental Figure 7A-
C). CD20-BsAbs increased the expression of activation markers
(CD69, CD25) on both CD8+ endogenous T cells and CAR
T cells. It induced upregulated activation or exhaustion marker
expression and supported the proliferation and cytotoxicity of
endogenous T cells, whereas CAR T cells already induced high
expression levels of PD-1, CD39, and Ki67 as monotherapy
(Figure 2G; supplemental Figure 7D-G). Ex vivo treatment
revealed strong CD20-BsAb–induced degranulation and cyto-
kine production in endogenous CD8+ T cells (supplemental
Figure 8), emphasizing the potential of CD20-BsAbs to sup-
port CAR T-cell therapy by harnessing endogenous T cells.

In summary, our work showed that CAR T cells and BsAb–directed
endogenous T cells significantly potentiated each other to eradi-
cate malignant B cells. Improved CAR T-cell expansion and
persistence have been shown to correlate with improved out-
comes in patients with B-cell lymphoma and might be a consid-
erable treatment alternative for treatment-refractory patients with
CLL. Our results therefore suggest that combination treatment
with CAR T cells and BsAbs may warrant clinical exploration.
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