

Value of Immune Checkpoint Blockade in Microsatellite Stable/Mismatch Repair Proficient Metastatic Colorectal Cancer

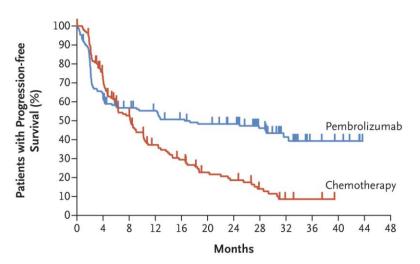
Benjamin P. Geisler, MD MPH
Akershus University Hospital / University of Oslo

Lørenskog / Oslo, Norway, 15 September 2024



#### **DECLARATION OF INTERESTS**

Benjamin P. Geisler, MD MPH


In-kind drug donation and research funds (to institution): Bristol-Myers Squibb

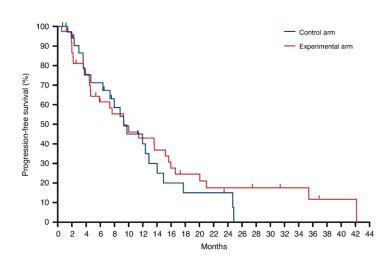


## Background: 1st-line ICB for metastatic CRC



#### MSI/dMMR




#### KeyNOTE-177

André et al. N Engl J Med 2020

Pembrolizumab vs. 5FU-based ±bevacizumab or cetuximab

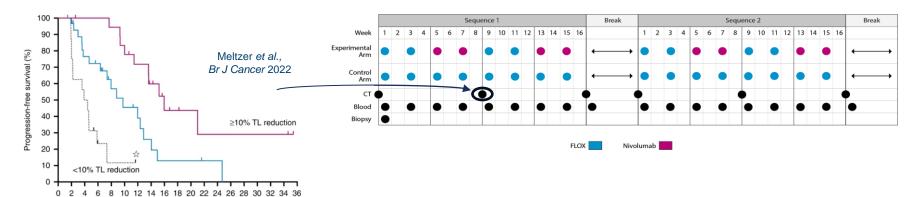
HR (PFS): 0.60 (95% CI: 0.45; 0.80)

#### MSS/pMMR



#### **METIMMOX**

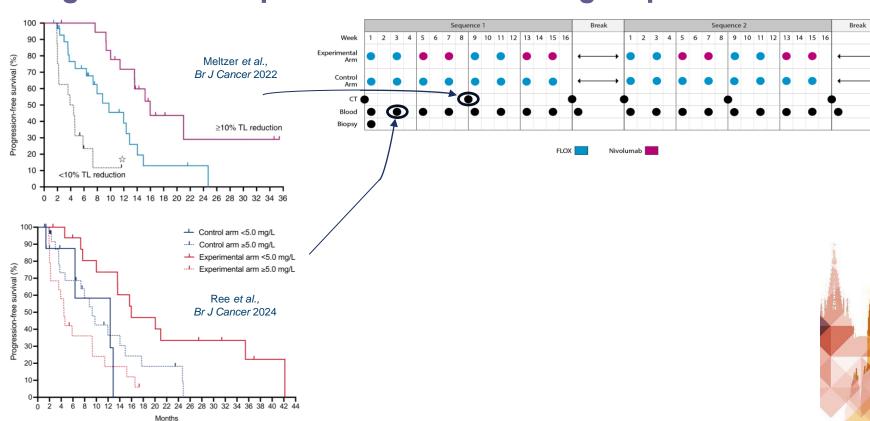
Ree et al. Br J Cancer 2024


Alternating two cycles each of FLOX and nivolumab

HR (PFS): 0.88 (95% CI: 0.50; 1.57)

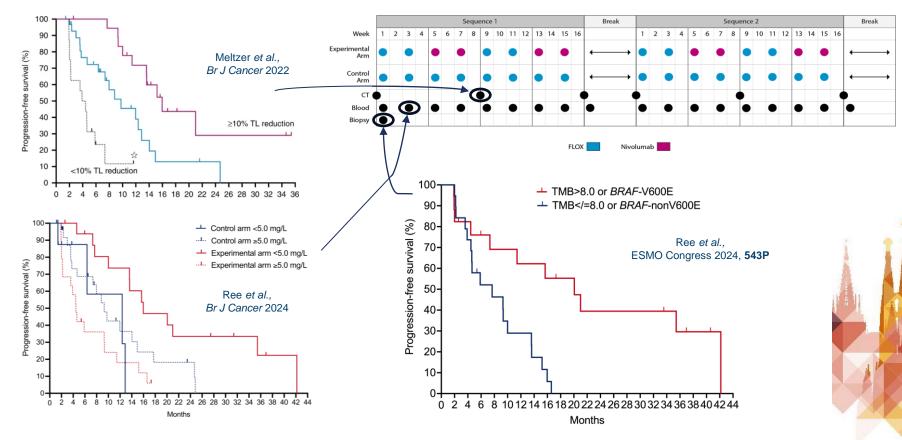


# Background: MSS/pMMR Biomarker Subgroups









# Background: MSS/pMMR Biomarker Subgroups





# Background: MSS/pMMR Biomarker Subgroups





## **Objective**



To quantify the <u>value for money</u> of alternating two cycles each of oxaliplatin-based chemotherapy (<u>FLOX</u>) and ICB (<u>nivolumab</u>) for unresectable metastatic <u>MSS/pMMR</u> colorectal cancer, compared with standard-of-care FLOX alone, with and without <u>biomarker-selected subgroups</u>





- Model-based cost-effectiveness analysis (partitioned survival model via parametric fitting of progression-free and overall survival) using individual participant data from METIMMOX-1
- Health-related <u>quality of life</u> via <u>EQ-5D-5L</u> surveys collected <u>in-trial</u>
- Costs in <u>2023 Euros</u> were estimated from a <u>healthcare perspective</u> and included the study drugs, diagnostic testing, second-line and end-of-life care
- Outcomes were extrapolated to <u>lifetime</u> and <u>discounted</u> at 4% per year
- We estimated incremental cost-effectiveness ratios (ICERs) and compared to a Norwegian cost-effectiveness threshold of NOK 605,000/QALY (~€51,000/QALY)





- Model-based cost-effectiveness analysis (partitioned survival model via parametric fitting of progression-free and overall survival) using individual participant data from METIMMOX-1
- Health-related <u>quality of life</u> via <u>EQ-5D-5L</u> surveys collected <u>in-trial</u>
- Costs in <u>2023 Euros</u> were estimated from a <u>healthcare perspective</u> and included the study drugs, diagnostic testing, second-line and end-of-life care
- Outcomes were extrapolated to <u>lifetime</u> and <u>discounted</u> at 4% per year
- We estimated incremental cost-effectiveness ratios (ICERs) and compared to a Norwegian cost-effectiveness threshold of NOK 605,000/QALY (~€51,000/QALY)





- Model-based cost-effectiveness analysis (partitioned survival model via parametric fitting of progression-free and overall survival) using individual participant data from METIMMOX-1
- Health-related <u>quality of life</u> via <u>EQ-5D-5L</u> surveys collected <u>in-trial</u>
- Costs in <u>2023 Euros</u> were estimated from a <u>healthcare perspective</u> and included the study drugs, diagnostic testing, second-line and end-of-life care
- Outcomes were extrapolated to <u>lifetime</u> and <u>discounted</u> at 4% per year
- We estimated incremental cost-effectiveness ratios (ICERs) and compared to a Norwegian <u>cost-effectiveness threshold</u> of NOK 605,000/QALY (~€51,000/QALY)





- Model-based cost-effectiveness analysis (partitioned survival model via parametric fitting of progression-free and overall survival) using individual participant data from METIMMOX-1
- Health-related <u>quality of life</u> via <u>EQ-5D-5L</u> surveys collected <u>in-trial</u>
- Costs in <u>2023 Euros</u> were estimated from a <u>healthcare perspective</u> and included the study drugs, diagnostic testing, second-line and end-of-life care
- Outcomes were extrapolated to <u>lifetime</u> and <u>discounted</u> at 4% per year
- We estimated incremental cost-effectiveness ratios (ICERs) and compared to a Norwegian cost-effectiveness threshold of NOK 605,000/QALY (~€51,000/QALY)





- Model-based cost-effectiveness analysis (partitioned survival model via parametric fitting of progression-free and overall survival) using individual participant data from METIMMOX-1
- Health-related <u>quality of life</u> via <u>EQ-5D-5L</u> surveys collected <u>in-trial</u>
- Costs in <u>2023 Euros</u> were estimated from a <u>healthcare perspective</u> and included the study drugs, diagnostic testing, second-line and end-of-life care
- Outcomes were extrapolated to <u>lifetime</u> and <u>discounted</u> at 4% per year
- We estimated incremental cost-effectiveness ratios (ICERs) and compared to a Norwegian cost-effectiveness threshold of NOK 605,000/QALY (~€51,000/QALY)





- Model-based cost-effectiveness analysis (partitioned survival model via parametric fitting of progression-free and overall survival) using individual participant data from METIMMOX-1
- Health-related <u>quality of life</u> via <u>EQ-5D-5L</u> surveys collected <u>in-trial</u>
- Costs in <u>2023 Euros</u> were estimated from a <u>healthcare perspective</u> and included the study drugs, diagnostic testing, second-line and end-of-life care
- Outcomes were extrapolated to <u>lifetime</u> and <u>discounted</u> at 4% per year
- We estimated incremental cost-effectiveness ratios (ICERs) and compared to a Norwegian cost-effectiveness threshold of NOK 605,000/QALY (~€51,000/QALY)



# Methods: Baseline Characteristics and Key Input Parameters (i)



| <u>Overall</u>    | Control Arm                                                                                 | Experimental Arm                                                                                                                                                                                                                                                                            |
|-------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 76                | 38                                                                                          | 38                                                                                                                                                                                                                                                                                          |
| 64.5 [57.8; 72.0] | 65.0 [58.5; 72.8]                                                                           | 60.5 [57.0; 72.0]                                                                                                                                                                                                                                                                           |
| 35 (46.1)         | 15 (39.5)                                                                                   | 20 (52.6)                                                                                                                                                                                                                                                                                   |
| 44 (57.9)         | 21 (55.3)                                                                                   | 23 (60.5)                                                                                                                                                                                                                                                                                   |
| 55 (72.4)         | 29 (76.3)                                                                                   | 20 (68.4)                                                                                                                                                                                                                                                                                   |
| 54 (71.1)         | (71.1)                                                                                      | (71.1)                                                                                                                                                                                                                                                                                      |
| -24 [-1; -35]     | -27 [-16; -38]                                                                              | <b>–11</b> [+13; <b>–31</b> ]                                                                                                                                                                                                                                                               |
| 6.0 [2.0; 15.0]   | 9.0 [5.0; 17.0]                                                                             | 5.0 [1.0; 9.32]                                                                                                                                                                                                                                                                             |
| n.a.              | n.a.                                                                                        | 8.0 [4.1; 10.2]                                                                                                                                                                                                                                                                             |
|                   | 76 64.5 [57.8; 72.0] 35 (46.1) 44 (57.9) 55 (72.4) 54 (71.1)  -24 [-1; -35] 6.0 [2.0; 15.0] | 76       38         64.5 [57.8; 72.0]       65.0 [58.5; 72.8]         35 (46.1)       15 (39.5)         44 (57.9)       21 (55.3)         55 (72.4)       29 (76.3)         54 (71.1)       (71.1)         -24 [-1; -35]       -27 [-16; -38]         6.0 [2.0; 15.0]       9.0 [5.0; 17.0] |



# Methods: Baseline Characteristics and Key Input Parameters (ii)



Cost per FLOX cycle: € 427

Cost per nivolumab cycle: € 13,923

Cost for CT scan incl. reading: € 386 (standard of care)

Cost for NGS (Illumina TSO-500): € 1,439 (additional costs)

Cost for last month of life: € 13,803

Health-related QoL before PFS is reached (SD): 0.952 ±0.111

Health-related QoL *after* PFS is reached (SD):  $0.895 \pm 0.093$ 



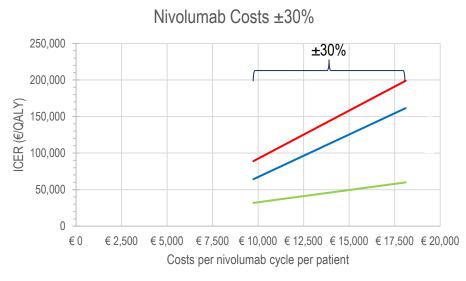
## **Results: Basecase Cost-effectiveness Analysis**



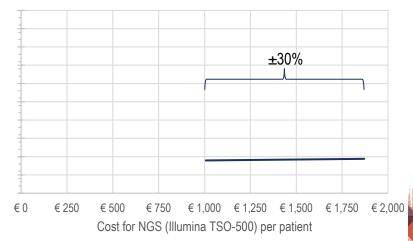
|                               | Arm         | Costs     | Incremental<br>Costs | QALYs  | Incremental QALYs | ICER (€/QALY) |
|-------------------------------|-------------|-----------|----------------------|--------|-------------------|---------------|
| METIMMOX<br>ITT<br>population | Control arm | € 34,520  | € 75,057             | 1.5712 | 0.1175            | 638,798       |
|                               | Exp. arm    | € 109,577 |                      | 1.6887 |                   |               |
| TL reduction                  | Control arm | € 66,081  | € 30,386             | 1.9557 | 0.2112            | 143,850       |
| ≥10%                          | Exp. arm    | € 96,467  |                      | 2.1669 |                   |               |
| CRP <5.0                      | Control arm | € 45,197  | € 32,945             | 1.9639 | 0,2920            | 112,840       |
| mg/L                          | Exp. arm    | € 78,142  |                      | 2.2558 |                   |               |
| TMB >8.0<br>mut/MB            | Control arm | € 34,530  | € 16,616             | 1.5712 | 0.3656            | i 45,451      |
|                               | Exp. arm    | € 51,146  |                      | 1.9368 |                   |               |



## **Results: Basecase Cost-effectiveness Analysis**




|                    | Arm         |           | Incremental<br>Costs | QALYs  | Incremental<br>QALYs | ICER (€/QALY) |
|--------------------|-------------|-----------|----------------------|--------|----------------------|---------------|
| METIMMOX<br>ITT    | Control arm | € 34,520  | € 75,057             | 1.5712 |                      | 638,798       |
| population         | Exp. arm    | € 109,577 |                      | 1.6887 | 0.1175               |               |
| TL reduction       | Control arm | € 66,081  | € 30,386             | 1.9557 | 0.2112               | 143,850       |
| ≥10%               | Exp. arm    | € 96,467  |                      | 2.1669 |                      |               |
| CRP <5.0           | Control arm | € 45,197  | € 32,945             | 1.9639 | 0.2920               | 112 940       |
| mg/L               | Exp. arm    | € 78,142  |                      | 2.2558 |                      | 112,840       |
| TMB >8.0<br>mut/MB | Control arm | € 34,530  | € 16,616             | 1.5712 | 0.3656               | 45,451        |
|                    | Exp. arm    | € 51,146  |                      | 1.9368 |                      | 45,451        |

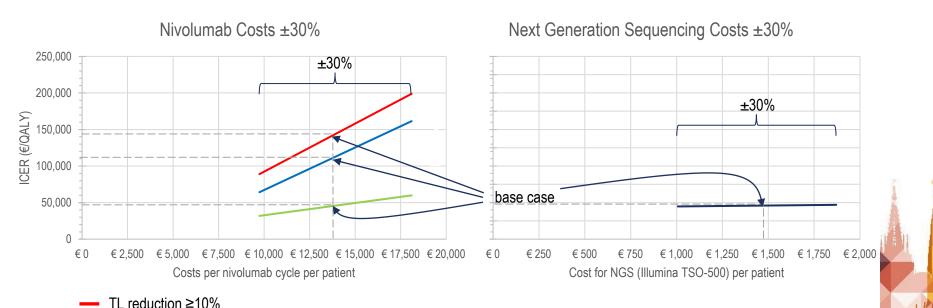



## Results: Key Deterministic Sensitivity Analysis



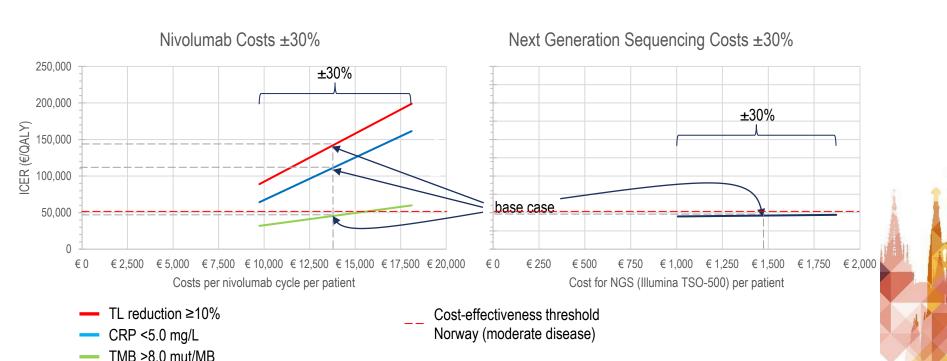


Next Generation Sequencing Costs ±30%




- TL reduction ≥10%
- CRP <5.0 mg/L</p>
- TMB >8.0 mut/MB

## Results: Key Deterministic Sensitivity Analysis


CRP <5.0 mg/L TMB >8.0 mut/MB





## Results: Key Deterministic Sensitivity Analysis





## **Limitations**



- 1. Post-hoc analyses
- 2. Awaiting TMB data for the control group
- 3. Probabilistic sensitivity analysis
- 4. Results are set in the context of Norway



## **Conclusions**



- <u>Biomarker-guided patient selection</u> for first-line ICB compared to treating all unresectable metastatic <u>MSS/pMMR</u> CRC patients may improve incremental effectiveness while lowering incremental costs, rendering it potentially cost-effective in Norway
- The value of a <u>TMB-based treatment approach</u> is promising, and prospective validation is warranted

#### Acknowledgements:

- Our patients
- Co-authors: Dr. Sebastian Meltzer, Prof. Emily A. Burger, Prof. Eline Aas, and Prof. Anne Hansen Ree
- Norwegian Cancer Society for research grants and Bristol-Myers Squibb



## **Conclusions**



- <u>Biomarker-guided patient selection</u> for first-line ICB compared to treating all unresectable metastatic <u>MSS/pMMR</u> CRC patients may improve incremental effectiveness while lowering incremental costs, rendering it potentially <u>cost-effective</u> in Norway
- The value of a <u>TMB-based treatment approach</u> is promising, and prospective validation is warranted

#### Acknowledgements:

- Our patients
- Co-authors: Dr. Sebastian Meltzer, Prof. Emily A. Burger, Prof. Eline Aas, and Prof. Anne Hansen Ree
- Norwegian Cancer Society for research grants and Bristol-Myers Squibb

