

The Rome Trial - From Histology to Target: the Road to Personalize Targeted Therapy and Immunotherapy

A. Botticelli and colleagues

Application of ProvGigaPath, an open-weight billion-parameter foundation model based on a novel vision transformer architecture for cancer mutation prediction and TME analysis <u>C. Bifulco and colleagues</u>

Federica Di Nicolantonio

University of Torino, Department of Oncology & Candiolo Cancer Institute, FPO – IRCCS

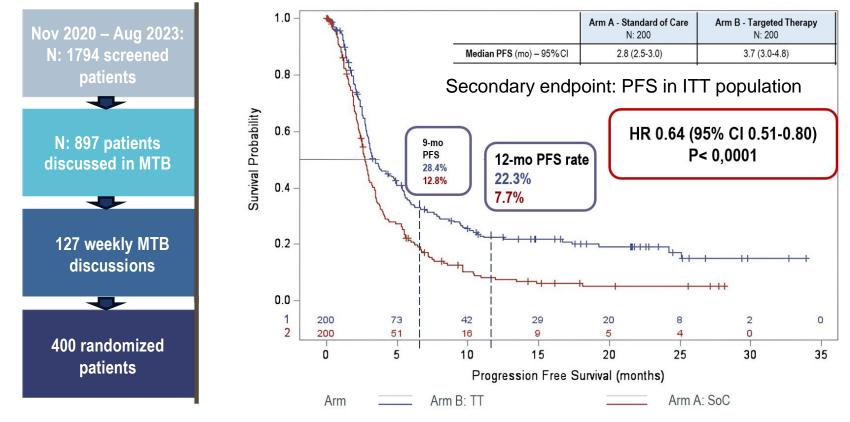
DECLARATION OF INTERESTS

Federica Di Nicolantonio

Received speaker's fees: Illumina Inc, Pierre Fabre

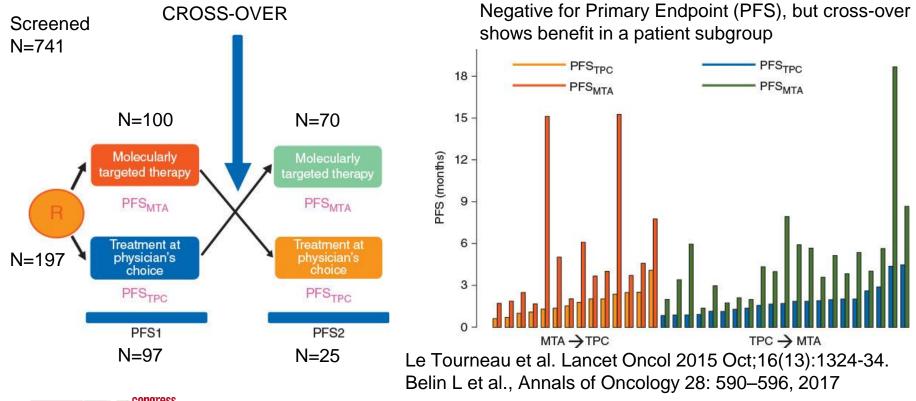
Research funding: The Italian Association for Cancer Research (Fondazione AIRC), Italian Ministry of Health.

Federica Di Nicolantonio


The Rome Trial - From Histology to Target

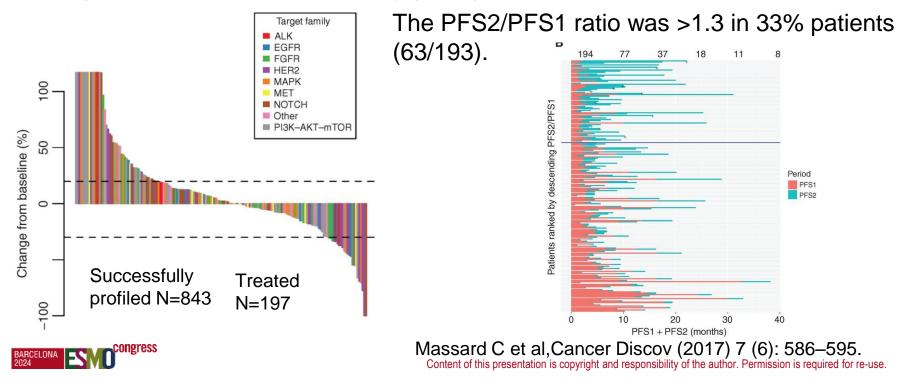
The study met its ORR Primary endpoint

Best response	Arm A Standard of Care N: 200 (%)	Arm B Targeted Therapy N: 200 (%)	p value	Global ORR 13.3%	
CR	0	5 (2.5%)			17.0% 34/200
PR	19 (9.5%)	29 (14.5%)			
SD	35 (17.5%)	36 (18.0%)		9.5%	
PD	147 (73.0%)	130 (65.0%)	-	19/200	
ORR	9.5% [5.8-14.4]	17.0% [12.1-22.9]	0.027		
				SOC	TT

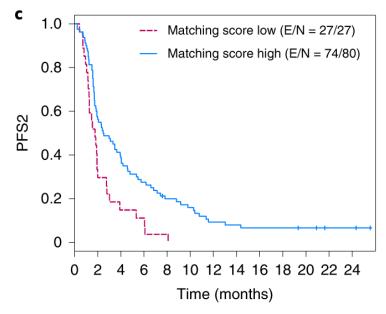

The Rome Trial - From Histology to Target

Andrea Botticelli

Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA)



Federica Di Nicolantonio


High-Throughput Genomics and Clinical Outcome in Hardto-Treat Advanced Cancers: the MOSCATO 01 Trial

% patients presenting progression-free survival (PFS) on matched therapy (PFS2) 1.3-fold longer than the PFS on prior therapy (PFS1).

Genomic and transcriptomic profiling expands precision cancer medicine: the WINTHER trial

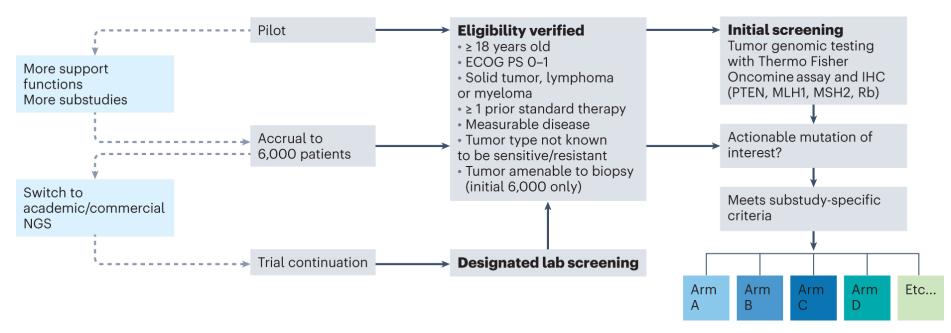
Screened N=303 Treated N=107

159 drugs given, 115 off-label, 22 on-label and 22 investigational

Drug targets (number of patients who received a drug that impacted designated target)***

BRAF	2
CDK4/6	3
HER pathway (EGFR/ERBB2/ERBB3/ERBB4)	17
FGFR	9
MEK	17
MET	11
PARP	1
Pan RAF	1
PI3K/AKT/mTOR	23
RET	4
VEGFR	32
WNT	5
HORMONAL RECEPTOR	2
IMMUNE	7
OTHER	22

Rodon J et al., Nat Med. 2019 May;25(5):751-758.



The NCI-MATCH trial: lessons for precision oncology

Federica Di Nicolantonio

Screened ≈ 6000; Treated N=1593

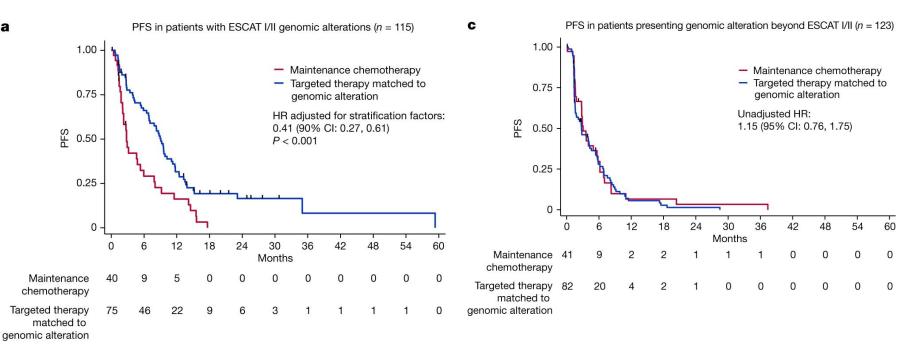
7 of the initial 27 substudies (of 38 total) in NCI-MATCH have positive outcome

Peter J O'Dwyer et al., Nat Med . 2023 Jun;29(6):1349-1357.

The NCI-MATCH trial

Arm	Molecular aberration	Treatment	N	N eval.	Number of responses (%)	6-month PFS	Met endpoint?
F	ALK fusions	Crizotinib	5	4	2 (50.0%)	25%	Yes
н	p.Val600Glu or p.Val600Lys mutations	Dabrafenib/ trametinib	35	29	11 (37.9%)	68.4%	Yes
К2	FGFR mutation/fusion	Erdafitinib	35	21	3 (14.3%)	36.8%	Yes
Q	HER2 amplify.	Ado- trastuzumab emtansine	38	36	2 (5.6%)	23.6%	No
Y	AKT mutations	Capivasertib	35	35	10 (28.6%)	50.0%	Yes
Z1D	dMMR status	Nivolumab	47	42	15 (35.7%)	51.3%	Yes
Z1F	PIK3CA mutation	Copanlisib	35	25	4 (16.0%)	38%	Yes
Z1K	AKT mutation	Ipatasertib	35	26	6 (23.1%)	52.4%	Yes

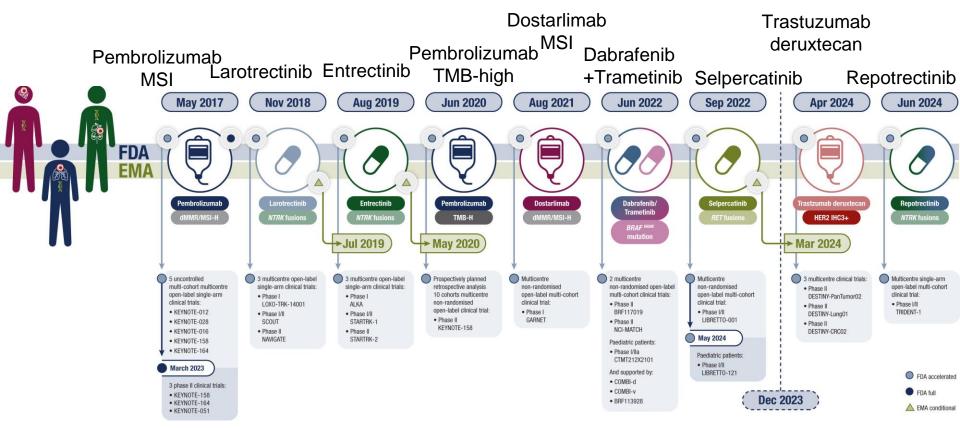
Ranking genomic alterations as targets for cancer precision medicine



Mateo J et al., Ann Oncol . 2018 Sep 1;29(9):1895-1902.

Federica Di Nicolantonio

ESCAT I/II genomics alterations to select treatment for patients with metastatic breast cancer


Andre F., et al., Nature volume 610, pages343–348 (2022)

а

Federica Di Nicolantonio

TUMOR-AGNOSTIC APPROVED DRUGS

Westphalen, C.B. et al. The ESMO Tumour-Agnostic Classifier and Screener (ETAC-S): a tool for assessing tumour-agnostic potential of molecularly guided therapies and for steering drug development. Ann Oncol 2024

The ROME trial: Available targeted treatments and pathways

Targeted Therapy	Target pathways
Erlotinib	EGFR mutations
Trastuzumab, pertuzumab, TDM1 Everolimus Vemurafenib, cobimetinib Alectinib, brigatinib Pralsetinib*, selpercatinib* Palbociclib Ponatinib Vismodegib Itacitinib Pemigatinib Ipatasertib, alpelisib* Entrectinib*	1, Iapatinib ERBB2 amplification/mutations mTOR mutations, AKT mutations BRAF mutations ALK traslocations, RET alterations RET alterations CDK4/6, CDKN2A/B alterations Bcr-abl traslocations SMO/PTCH1 mutations JAK mutations FGFR1/2/3 alterations Pi3k, AKT, PTEN alterations NTRK1/2/3 fusions, ROS1
Tepotinib	METex14, MET alterations
Talazoparib	BRCA 1/2 mutations, HRD
Immunotherapy	Biomarkers
Nivolumab, ipilimumab, atezolizu	umab MSI, high TMB**

^t Drugs included in the V4 protocol amendment in 10/2022 ^{t*} high TMB defined as >10 mut/mb in solid and/or liquid NGS

ESMO Recommendations for the use of tumour NGS in 2024

ESMO recommends to carry out **tumour NGS** to detect **tumour-agnostic alterations** in patients with **advanced cancers**, in countries where **tumour-agnostic targeted therapies are accessible (**cost-effectiveness and fusions are integrated in the panel)

The ESMO PMWG recommends running tumour NGS in patients with

advanced non-squamous NSCLC;

breast;

colorectal;

prostate;

ovarian cancer;

advanced cholangiocarcinoma;

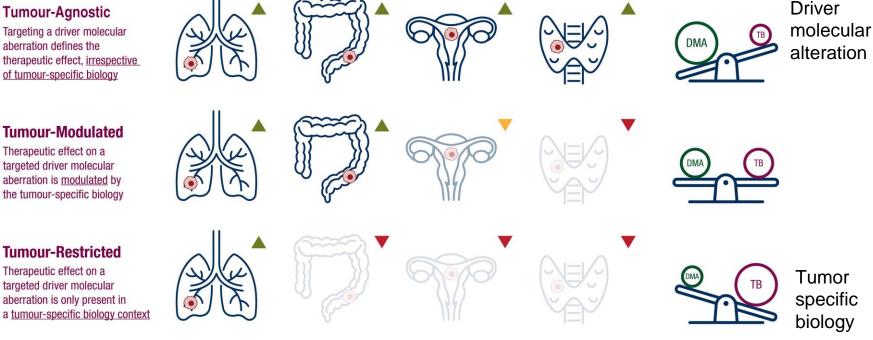
GIST;

sarcoma; thyroid cancer; and unfavourable CUP. Recommendations for the use of next-generation sequencing (NGS) for patients with advanced cancer in 2024: a report from the ESMO Precision Medicine Working Group

Mosele MF et al. Annals of Oncology. 2024 ; Vol. 35, No. 7. pp. 588-606.

Federica Di Nicolantonio

Proposed ESMO Tumour-Agnostic Classifier



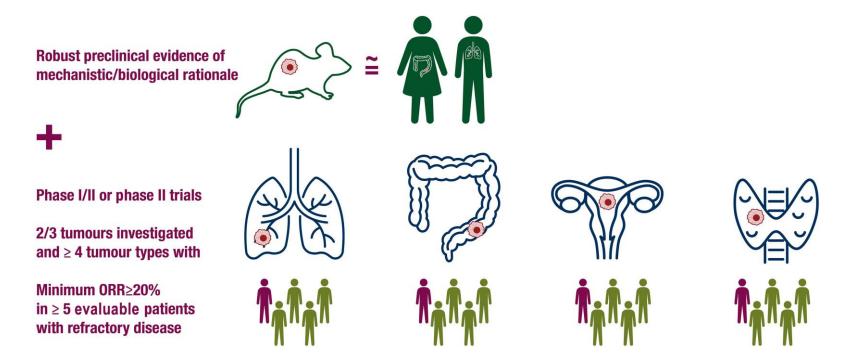
therapeutic effect, irrespective of tumour-specific biology

Tumour-Modulated Therapeutic effect on a targeted driver molecular aberration is modulated by the tumour-specific biology

Tumour-Restricted Therapeutic effect on a

targeted driver molecular

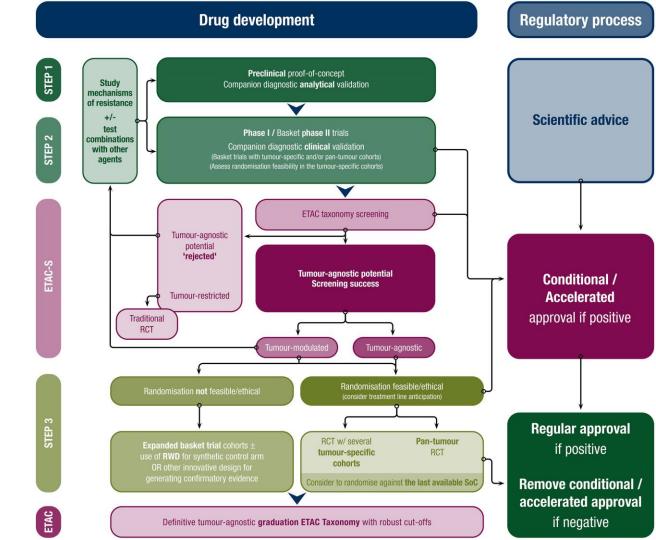
Organ icons are surrogates for tumour-specific biology


▲ High therapeutic effect Moderate therapeutic effect

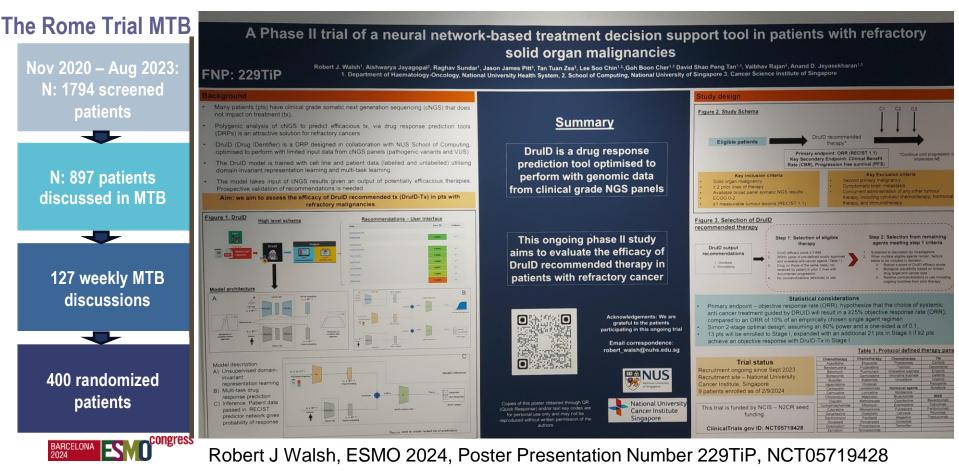
No therapeutic effect

Westphalen, C.B. et al. The ESMO Tumour-Agnostic Classifier and Screener (ETAC-S): a tool for assessing tumour-agnostic potential of molecularly guided therapies and for steering drug development. Ann Oncol 2024

ETAC-S Proposed minimum eligibility requirements for tumour-agnostic potential

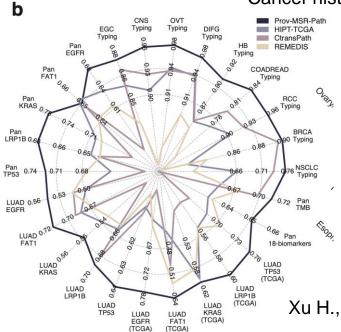


Westphalen, C.B. et al. The ESMO Tumour-Agnostic Classifier and Screener (ETAC-S): a tool for assessing tumour-agnostic potential of molecularly guided therapies and for steering drug development. Ann Oncol 2024


Proposed tumor-agnostic drug development framework

Westphalen, C.B. et al. The ESMO Tumour-Agnostic Classifier and Screener (ETAC-S): a tool for assessing tumouragnostic potential of molecularly guided therapies and for steering drug development. Ann Oncol 2024

Al tools to perform tumor agnostic clinical trials


BARCELONA 2024 DISCUSSION

The Rome Trial - From Histology to Target: the Road to Personalize Targeted Therapy and Immunotherapy

A. Botticelli and colleagues

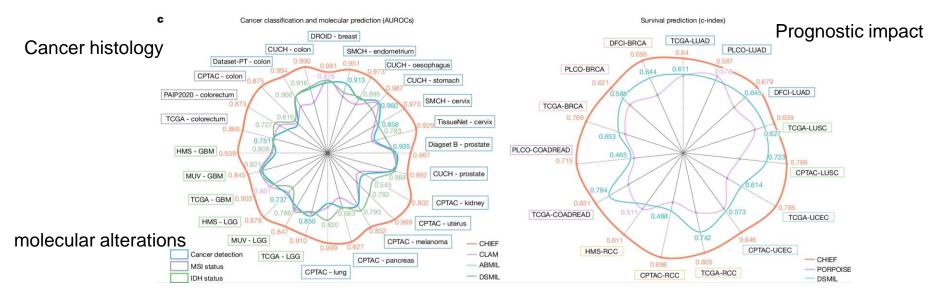
Application of ProvGigaPath, an open-weight billion-parameter foundation model based on a novel vision transformer architecture for cancer mutation prediction and TME analysis <u>C. Bifulco and colleagues</u>

ProvGigaPath, digital pathology for cancer mutation prediction <u>C. Bifulco and colleagues</u>

Cancer histology, molecular alterations

Self Supervised Transformer based Models

Model	Param. (M)	Algorithm	Training Data Source	Tiles (M)	Slides (K)	Organs
CTransPath [3]	28	SRCL	TCGA, PAIP	16	32	25
Phikon [7]	86	iBOT	TCGA	43	6	13
UNI [10]	303	DINOv2	MGB	100	100	20
Virchow [12]	631	DINOv2	MSKCC	2,000	1,488	17
Campanella et al. $[13]$	22	DINO	MSHS	1,600	423	42
Campanella et al. $[13]$	303	MAE	MSHS	3,200	423	42
Rudolf-V [16]	304	DINOv2	Multicenter	1,200	134	14
Prov-GigaPath [17]	$1,\!135$	DINOv2	\mathbf{PHS}	1,300	171	31

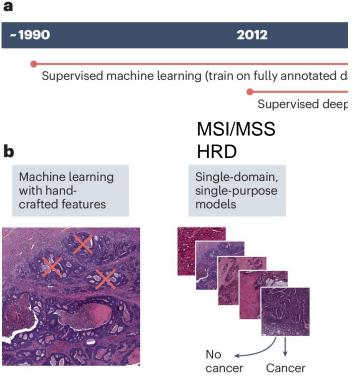

arxiv.org/pdf/2407.06508v3

Xu H., et al., Nature 2024 Jun;630(8015):181-188.

Presented by Carlo Bifulco at ESMO 2024

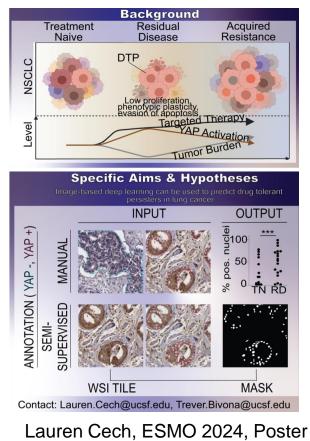
Predicting cancer diagnosis and prognosis by applying AI to pathology slides

Clinical Histopathology Imaging Evaluation Foundation (CHIEF) model: weakly supervised machine learning framework to extract pathology imaging features for systematic cancer evaluation



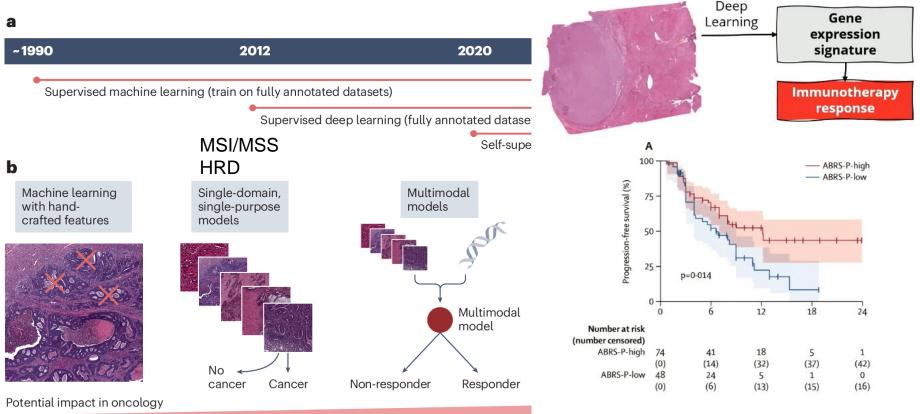
Wang, X., Zhao, J., Marostica, E. et al. A pathology foundation model for cancer diagnosis and prognosis prediction. Nature Sep 4, 2024. https://doi.org/10.1038/s41586-024-07894-z

Federica Di Nicolantonio


Progress of AI in medical imaging

Potential impact in oncology

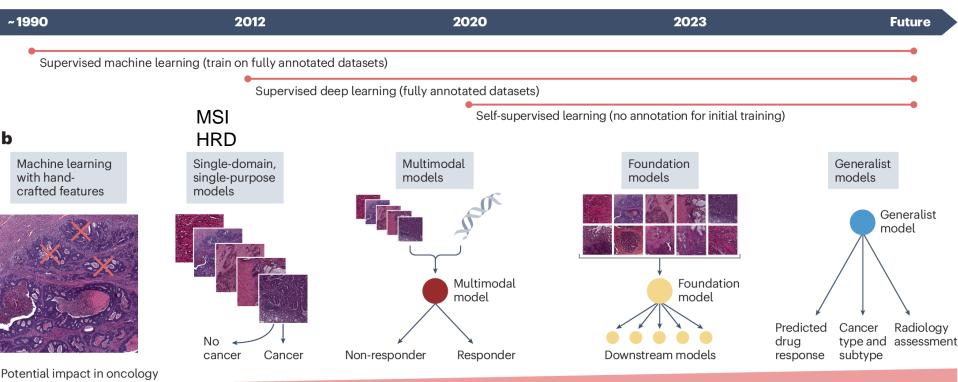
Perez-Lopez, et al., Nat Rev Cancer. 2024 Jun;24(6):427-441.


Predicting drug tolerant persister cells by AI

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Presentation Number 189P

Progress of AI in medical imaging

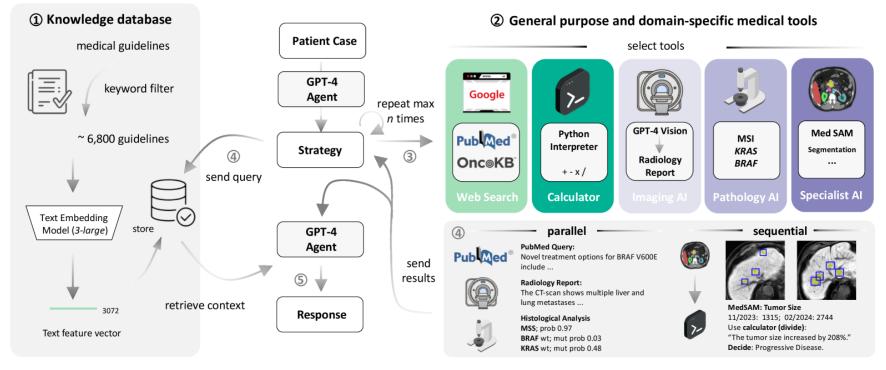

Perez-Lopez, et al., Nat Rev Cancer. 2024 Jun;24(6):427-441.

Zeng, et al., Lancet Oncol., 2023

Federica Di Nicolantonio

Progress of AI in medical imaging

a



Perez-Lopez, et al., Nat Rev Cancer. 2024 Jun;24(6):427-441.

Federica Di Nicolantonio

Autonomous Artificial Intelligence Agents for Clinical Decision Making in Oncology

Ferber Kather J, pre-print, https://arxiv.org/pdf/2404.04667 Kather J, ESMO 2024 presentation 15 Sept 2024

Implementing tumor agnostic precision medicine through AI

Neural networks

Radiology (AI features) Histopathology (AI features)

Spatial Pathology and -omics

Anatomical features

Plasma/serum protein markers

Tumour Molecular Profiling (DNA – WGS and 4D genome, RNA, protein)

Germ-line genomic testing

Liquid Biopsy (ctDNA and beyond)

Microbiome sequencing

Plasma (and tissue) metabolomics

Tissue resident and circulating immune cells (and markers)

Comorbidities Smoking Diet Lifestyle Physical Exercise Vital sign monitoring (smart) Education Social/family interactions Patient preference Financial issues (cost effectiveness) (AI driven) approach

Surgery (if so, when?) Radiotherapy (and dose)

Investigational and approved therapies

Drug combinations

Drug holidays

Dose reduction

Therapy switch

Acquired resistance

Surveillance duration and interval

Novel surrogate biomarkers for early drug development

THANK YOU Thanks to the presenters for making the slides available ahead of the ESMO meeting.

Prof. Federica Di Nicolantonio @fdinicolantonio

federica.dinicolantonio@unito.it https://www.aibh.unito.it/do/home.pl

European Society for Medical Oncology (ESMO) Via Ginevra 4, CH-6900 Lugano T. +41 (0)91 973 19 00 esmo@esmo.org

Copies of this presentation obtained through QR are for personal use only and may not be reproduced without written permission of the authors

esmo.org