

## **Discussion**

LBA25, 505O, 502O

#### **Clara Montagut**

Hospital del Mar, Barcelona



#### **DECLARATION OF INTERESTS**

Clara Montagut

Honoraria (advisory board member and/or invited speaker):

- Amgen, Biocartis, Guardant, Lilly, Merck-Serono, Pierre Fabre, Pfizer, Roche, Takeda

Research grants:

– Amgen, Merck



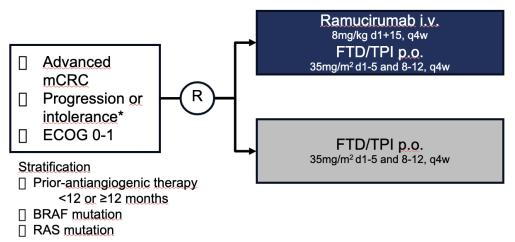
# **Current treatment for <u>refractory</u> biomarker-unselected mCRC**

| Study    | Exploratory arm | Control<br>arm | mOS,<br>months;<br>HR         | Toxicity of exploratory arm           |
|----------|-----------------|----------------|-------------------------------|---------------------------------------|
| CORRECT  | regorafenib     | placebo        | <b>6.4 vs 5</b><br>HR 0.77    | 50% ≥G3 TRAEs<br>17% ≥G3 HFS          |
| RECOURSE | FTD/TPI         | placebo        | <b>7.1 vs 5.3</b><br>HR 0.68  | 69% ≥G3 TRAEs<br>38% ≥G3 neutropenia  |
| FRESCO-2 | fruquintinib    | placebo        | <b>7.4 vs 4.8</b><br>HR 0.66  | 63% ≥G3 TRAEs<br>14% ≥G3 hypertension |
| SUNLIGHT | FTD/TPI + bev   | FTD/TPI        | <b>10.8 vs 7.5</b><br>HR 0.61 | 72% ≥G3 TRAEs<br>43% ≥G3 neutropenia  |
|          |                 |                |                               |                                       |



## **Current treatment for <u>refractory</u> biomarker-unselected mCRC**

|             | Study    | Exploratory arm  | Control<br>arm | mOS,<br>months;<br>HR         | Toxicity of exploratory arm                        |
|-------------|----------|------------------|----------------|-------------------------------|----------------------------------------------------|
| rug         | CORRECT  | regorafenib      | placebo        | <b>6.4 vs 5</b><br>HR 0.77    | 50% <u>&gt;</u> G3 TRAEs<br>17% <u>&gt;</u> G3 HFS |
| Single drug | RECOURSE | FTD/TPI          | placebo        | <b>7.1 vs 5.3</b> HR 0.68     | 69% ≥G3 TRAEs<br>38% ≥G3 neutropenia               |
| S           | FRESCO-2 | fruquintinib     | placebo        | <b>7.4 vs 4.8</b><br>HR 0.66  | 63% ≥G3 TRAEs<br>14% ≥G3 hypertension              |
| combination | SUNLIGHT | FTD/TPI +<br>bev | FTD/TPI        | <b>10.8 vs 7.5</b><br>HR 0.61 | 72% ≥G3 TRAEs<br>43% ≥G3 neutropenia               |
| quos        |          |                  |                |                               |                                                    |


- Importance of sustained angiogenesis inhibition
- Benefit & manageable toxicities from combination CT+antiangiogenic
  - FTD/TPI\_alone\_is not standard-of-care anymore



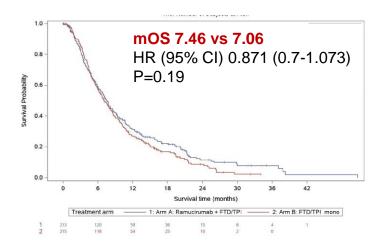
### RAMTAS STUDY



#### Open-label, multicenter, randomized phase III trial



<sup>\*</sup>failure or intolerance to fluoropyrimidines, oxaliplatin, irinotecan, anti-angiogenic agents (bevacizumab, aflibercept, ramucirumab or regorafenib) and anti-EGFR antibodies (if indicated). No prior FTD/TPI(Trifluridine-tipiracil)

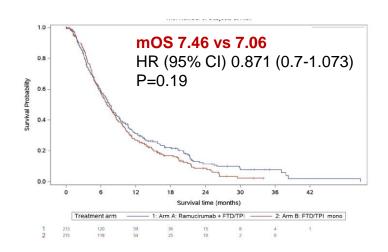

#### **Primary endpoint: OS**

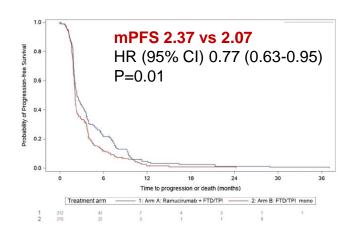
#### Comments

- Same strategy (sustained angiogenic inhibition) as previous studies
- Same primary endpoint (OS) as previous studies

## Addition of ramucirumab to FTD/TPI does not improve OS

Primary endpoint not met




## Addition of ramucirumab to FTD/TPI does not improve OS

Primary endpoint not met

statistically significant increase in PFS and DCR, but not clinically meaningful





DCR 39.4 vs 31.6 (p=0.033)



### RAMTAS in the context of current evidence

| Single drug |
|-------------|
| combination |

| Study:   | Exploratory<br>arm    | Control<br>arm | mOS,<br>months; HR     | Toxicity of exploratory arm                                 |
|----------|-----------------------|----------------|------------------------|-------------------------------------------------------------|
| CORRECT  | regorafenib           | placebo        | 6.4 vs 5<br>HR 0.77    | 50% ≥G3 TRAEs<br>17% ≥G3 HFS                                |
| RECOURSE | FTD/TPI               | placebo        | 7.1 ys 5.3<br>HR 0.68  | 69% ≥G3 TRAEs<br>38% ≥G3 neutropenia                        |
| FRESCO-2 | fruquintinib          | placebo        | 7.4 vs 4.8<br>HR 0.66  | 63% <u>&gt;</u> G3 TRAEs<br>14% <u>&gt;</u> G3 hypertension |
| SUNLIGHT | FTD/TPI +<br>bev      | FTD/TPI        | 10.8 vs 7.5<br>HR 0.61 | 72% ≥G3 TRAEs<br>43% ≥G3 neutropenia                        |
| RAMTAS   | FTD/TPI + ramucirumab | FTD/TPI        | 7.46 (s 7)<br>HR 0.87  | 56% >G3 TRAEs<br>32% >G3 neutropenia                        |

mOS in control arm FTD/TPI is similar to historical data



### RAMTAS in the context of current evidence (combination studies)

| Study:   | Exploratory arm       | Control<br>arm | mOS,<br>months; HR            | Previous treatment                  | Toxicity (exploratory vs control arm)                                                                                                                  |
|----------|-----------------------|----------------|-------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| SUNLIGHT | FTD/TPI + bevacizumab | FTD/TPI        | <b>10.8 vs 7.5</b><br>HR 0.61 | 2 lines<br>72% bev                  | <ul> <li>≥G3 TRAEs: 72% vs 69%</li> <li>≥G3 neutropenia: 43% vs 32%</li> <li>dose reduction: 16% vs 12%</li> </ul>                                     |
| RAMTAS   | FTD/TPI + ramucirumab | FTD/TPI        | <b>7.46 vs 7</b><br>HR 0.87   | ≥2 lines 63% ≥3 87% antiangiogenics | ≥G3 TRAEs: <b>56% vs 37%</b><br>≥G3 neutropenia: <b>32% vs 22%</b><br>dose reduction (FTD/TPI): <b>41% vs 24%</b><br>dose reduction (ramu): <b>18%</b> |

✓ Bevacizumab is an anti-VEGFA IgG1 moAb / Ramucirumab is an anti-VEGFR2 IgG1 moAb

### RAMTAS in the context of current evidence (combination studies)

| Study:   | Exploratory arm       | Control<br>arm | mOS,<br>months; HR            | Previous treatment                  | Toxicity (exploratory vs control arm)                                                                                                                  |
|----------|-----------------------|----------------|-------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| SUNLIGHT | FTD/TPI + bevacizumab | FTD/TPI        | <b>10.8 vs 7.5</b><br>HR 0.61 | 2 lines<br>72% bev                  | ≥G3 TRAEs: <b>72% vs 69%</b><br>≥G3 neutropenia: <b>43% vs 32%</b><br>dose reduction: <b>16% vs 12%</b>                                                |
| RAMTAS   | FTD/TPI + ramucirumab | FTD/TPI        | <b>7.46 vs 7</b><br>HR 0.87   | ≥2 lines 63% ≥3 87% antiangiogenics | ≥G3 TRAEs: <b>56% vs 37%</b><br>≥G3 neutropenia: <b>32% vs 22%</b><br>dose reduction (FTD/TPI): <b>41% vs 24%</b><br>dose reduction (ramu): <b>18%</b> |

- ✓ Bevacizumab is an anti-VEGFA IgG1 moAb / Ramucirumab is an anti-VEGFR2 IgG1 moAb
- ✓ RAMTAS population was very heavily pretreated, particularly with antiangiogenic drugs

### RAMTAS in the context of current evidence (combination studies)

| Study:   | Exploratory arm       | Control<br>arm | mOS,<br>months; HR            | Previous treatment                  | Toxicity (exploratory vs control arm)                                                                                      |
|----------|-----------------------|----------------|-------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| SUNLIGHT | FTD/TPI + bevacizumab | FTD/TPI        | <b>10.8 vs 7.5</b><br>HR 0.61 | 2 lines<br>72% bev                  | <ul> <li>≥G3 TRAEs: 72% vs 69%</li> <li>≥G3 neutropenia: 43% vs 32%</li> <li>dose reduction: 16% vs 12%</li> </ul>         |
| RAMTAS   | FTD/TPI + ramucirumab | FTD/TPI        | <b>7.46 vs 7</b><br>HR 0.87   | ≥2 lines 63% ≥3 87% antiangiogenics | ≥G3 TRAEs: 56% vs 37%<br>≥G3 neutropenia: 32% vs 22%<br>dose reduction (FTD/TPI): 41% vs 24%<br>dose reduction (ramu): 18% |

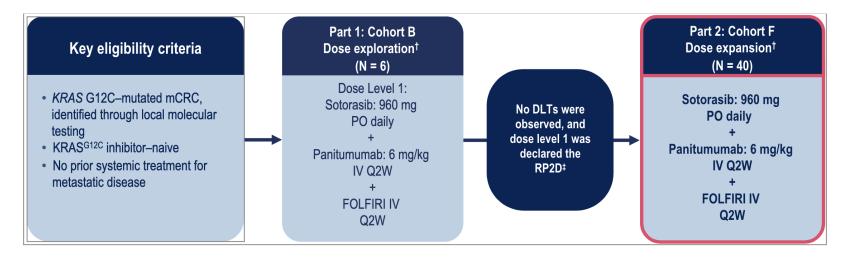
- ✓ Bevacizumab is an anti-VEGFA IgG1 moAb / Ramucirumab is an anti-VEGFR2 IgG1 moAb
- ✓ RAMTAS population was **very heavily pretreated**, particularly with antiangiogenic drugs
- ✓ High increase in TRAEs and severe neutropenia with both combinations
- ✓ High increase in dose reduction rate (50%) with the addition of ramucirumab to FTD/TPI

## My take-homes from RAMTAS

- Addition of ramucirumab to FTD/TPI did not improve OS in <u>heavily pretreated</u> biomarker-unselected refractory mCRC patients
- Is it clinical practice changing? NO
- There may be a benefit of adding ramucirumab in specific subgroups? increased OS in female patients (similar to previous studies with ramucirumab) left-sided? biomarker? other?



## My take-homes from RAMTAS


- Addition of ramucirumab to FTD/TPI did not improve OS in <u>heavily pretreated</u> biomarker-unselected refractory mCRC patients
- Is it clinical practice changing? NO
- There may be a benefit of adding ramucirumab in specific subgroups? increased OS in female patients (similar to previous studies with ramucirumab) left-sided? biomarker? other?

Is the one-size-fits-all strategy still valid in the era of precision medicine?



# Sotorasib + panitumumab + <u>FOLFIRI</u> in <u>1L KRAS G12C+</u> mCRC

Phase Ib CodeBreaK 101 study





# **Targeting KRAS G12C**

Where do we stand?

✓ KRAS G12C mut: 4% of mCRC and linked to worse prognosis.

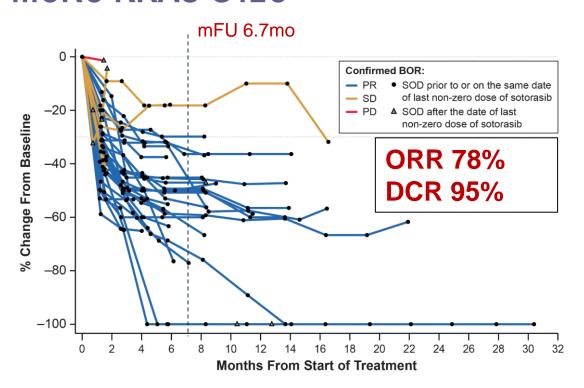
✓ Several drugs against KRAS G12C under clinical development, in combination with anti-EGFR moAb to prevent resistance.

✓ CodeBreak-300 was the first phase III clinical trial to show efficacy of a KRAS G12C inhibitor (sotorasib) plus anti-EGFR moAb (panitumumab) in refractory KRASG12C+ mCRC.



## Sotorasib + panitumumab + FOLFIRI in <u>1L mCRC</u>

Primary endpoint: Safety and tolerability


|                                          | CodeBreaK 101<br>Sotorasib 960 + Panitumumab +<br>FOLFIRI in 1L (N=40) |  |
|------------------------------------------|------------------------------------------------------------------------|--|
| Any-grade TRAEs, n<br>(%)                | 40 (100)                                                               |  |
| Grade ≥ 3                                | 23 (58)                                                                |  |
| Leading to dose reduction / interruption | 35 (88)                                                                |  |
| Leading to discontinuation               | 7 (18)                                                                 |  |
| Diarrhea                                 | 63%                                                                    |  |
| Nausea                                   | 55%                                                                    |  |
| Dermatitis acneiform                     | 48%                                                                    |  |
| Rash                                     | 38%                                                                    |  |
| Hypomagnesemia                           | 35%                                                                    |  |
| Neutropenia                              | 33%                                                                    |  |

#### Comments

- Manageable TRAEs consistent with safety profiles of panitumumab, sotorasib and FOLFIRI
- No fatal TRAEs



# Efficacy of sotorasib + panitumumab + FOLFIRI in 1L mCRC KRAS G12C



#### Comments

- PROMISING efficacy data
- Note of caution: this is a Phase1 clinical trial

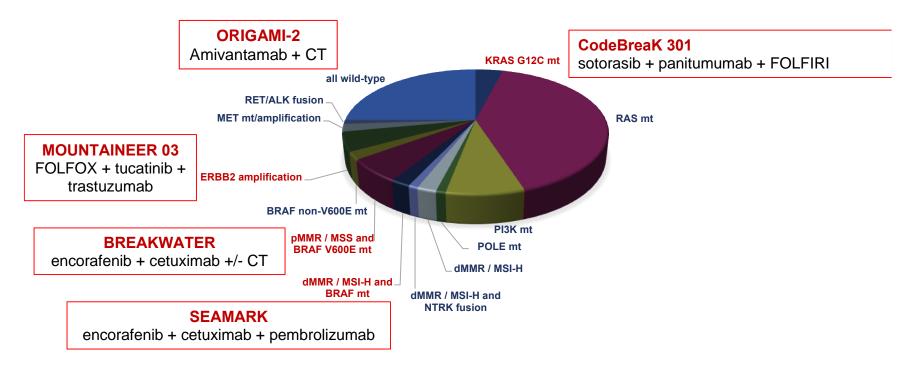


## My take-homes from Codebreak-101

#### **Strengths**

➤ First data on KRAS G12C inhibitor + antiEGFRi in combination with chemotherapy in 1L Manageable toxicities and promising activity

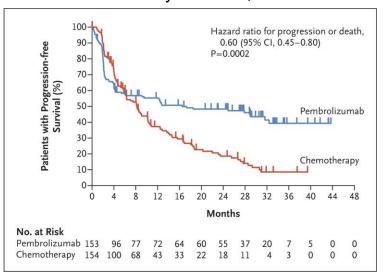
#### Next steps


- ➤ Is it clinical practice changing? NO
- > To be confirmed in a randomized trial

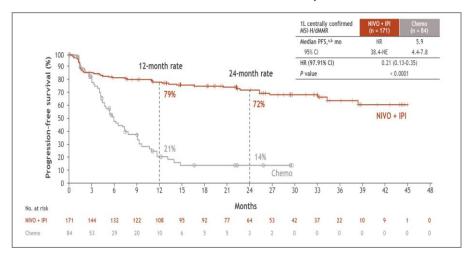
Exciting times for precision medicine in mCRC... we're moving to the first line!



## Moving precision medicine to 1L mCRC


Ongoing randomized trials in 1L mCRC with oncogenic drivers

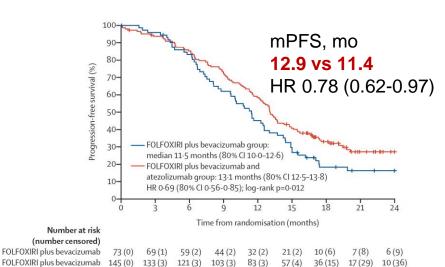




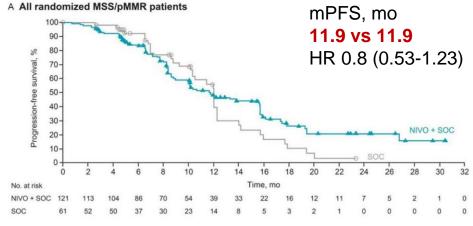

# Immune checkpoint inhibitors (ICI) are the standard-of-care in dMMR/MSI-H mCRC

Keynote 177, PFS




#### CheckMate 8HW, PFS

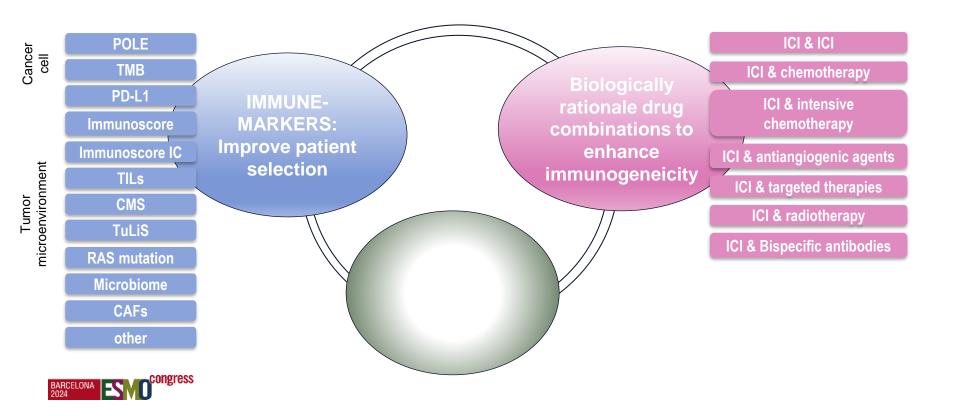




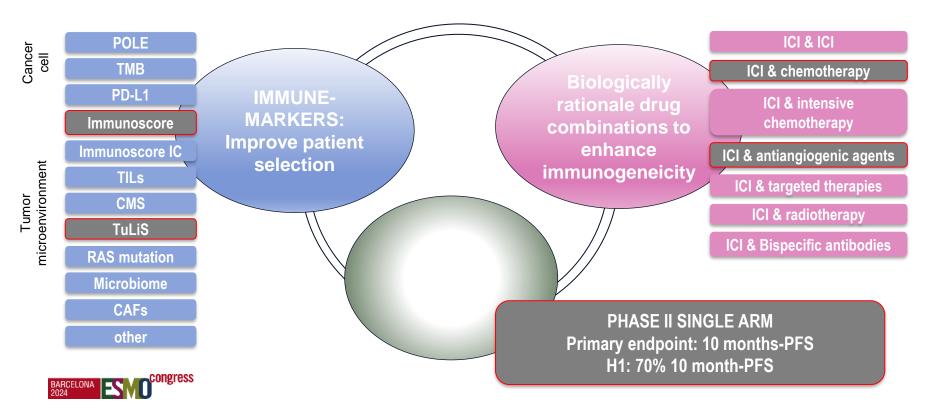

# Immune checkpoint inhibitors (ICI) in 1L pMMR/MSS mCRC: limited efficacy in randomized trials, so far

#### **ATEZO-TRIBE, PFS**



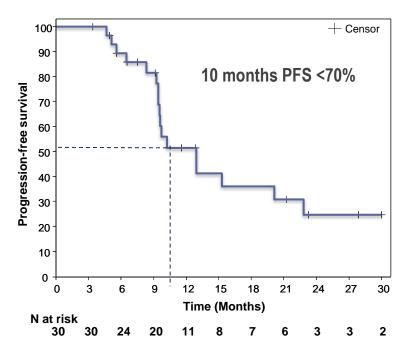

#### CheckMate 9x8, PFS






and atezolizumab

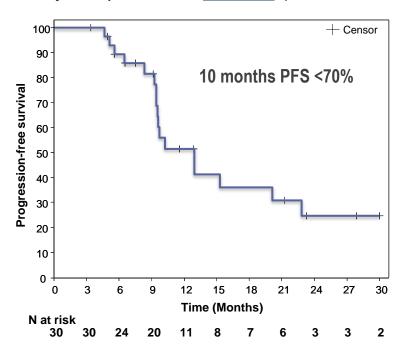
# Efficacious development of ICI-based strategies in MSS mCRC




# **POCHI TRIAL:** 1L XELOX + bev + pembro in pMMR/MSS and a <u>high immune infiltrate</u>



## POCHI trial: CAPOX + bev + pembro, in immune+ 1L mCRC


Short follow-up, still recruiting pts (PFS and OS <u>immature data</u>)
Primary endpoint was <u>not met</u> (H1 10-m PFS 70%)





## POCHI trial: CAPOX + bev + pembro, in immune+ 1L mCRC

Short follow-up, still recruiting pts (PFS and OS <u>immature data</u>) Primary endpoint was <u>not met</u> (H1 10-m PFS 70%)



#### Very promising and clinically relevant data

**ORR: 74%** 

DCR: 100%

**CR: 17%** 

mDoR 10mo

\* CR in ATEZO-TRIBE and CheckMate8x9 was 6% and 5%, respectively



# POCHI TRIAL. Strenght: <u>Immune-markers</u> to select patients

1. MSS / pMMR: centrally assessed

#### 2. Immune infiltrate:

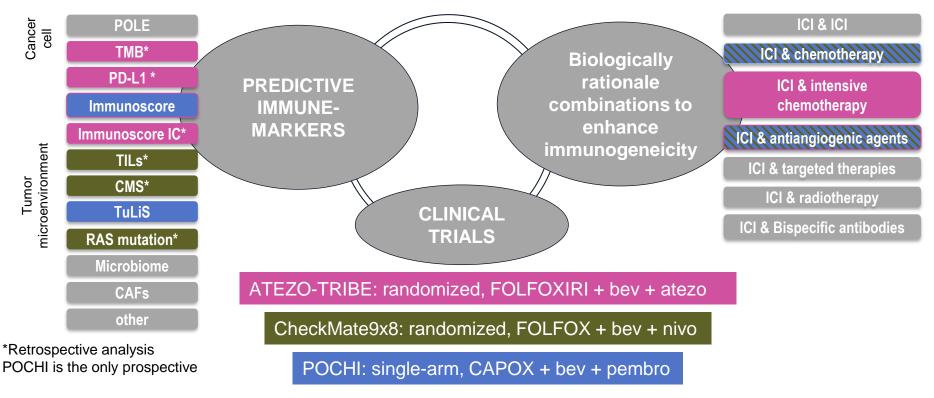
|            |                            | Immunoscore ®                | TuLiS                        | Immunoscore-IC               |
|------------|----------------------------|------------------------------|------------------------------|------------------------------|
|            | methods                    | CD3 & CD8 digital pathology  | CD3 digital pathology        | PD-L1 and CD8                |
|            |                            | Tumor core & invasive margin | Invasive margin              | density and proximity        |
|            |                            | Surgically resected specimen | Surgically resected specimen | Single FFPE section          |
| Prognostic |                            | YES                          | NO?                          | NO                           |
|            | Predictive of ICI efficacy | unknown                      | unknown                      | YES (retrospective analysis) |
|            |                            |                              |                              |                              |



# POCHI TRIAL. Strenght: <u>Immune-markers</u> to select patients

1. MSS / pMMR: centrally assessed

#### 2. Immune infiltrate:


|                            | Immunoscore ®                | TuLiS                        | Immunoscore-IC               |
|----------------------------|------------------------------|------------------------------|------------------------------|
| methods                    | CD3 & CD8 digital pathology  | CD3 digital pathology        | PD-L1 and CD8                |
|                            | Tumor core & invasive margin | Invasive margin              | density and proximity        |
|                            | Surgically resected specimen | Surgically resected specimen | Single FFPE section          |
| Prognostic                 | YES                          | NO?                          | NO                           |
| Predictive of ICI efficacy | unknown                      | unknown                      | YES (retrospective analysis) |
|                            |                              |                              |                              |

#### Comments on biomarker results

- ✓ Big discrepancy between TuLIS and immunoscore results
- ✓ Predictive vs prognostic markers? Limitation of a single-arm study
- ✓ Proof-of-concept study



# Searching for an accurate predictive immune-marker for ICI-based treatment in MSS tumors





## My take-homes from POCHI trial

#### **Strenghts**

✓ <u>Prospective immune-markers</u> to select patients for ICI-based treatment in MSS mCRC, with promising results with XELOX+bev+pembro

#### Next steps

- ✓ Is it practice changing? NO
- ✓ Supports a randomized trial in immune-selected pts (i.e., immunoscore-IC in ATEZOTRIBE-2)
- ✓ Who are these 17% patients with MSS tumors achieving a complete response with ICI-based treatment?



### THANK YOU

### to the presenters and all the persons behind these studies



Randomized Phase III trial of Ramucirumab in combination with TAS102 (Trifluridin/Tipiracil) vs. TAS102 monotherapy in heavily pretreated metastatic colorectal cancer

The IKF-AIO-RAMTAS trial.

S. Kasper<sup>1</sup>, R.D. Hofheinz<sup>2</sup>, S. Stintzing<sup>3</sup>, T. Dechow<sup>4</sup>, T. Ettrich<sup>5</sup>, M. Sinn<sup>6</sup>, C. Roderburg<sup>7</sup>, L. Fischer von Weikersthal<sup>8</sup>, U. Graeven<sup>9</sup>, C. Mueller<sup>10</sup>, J. Meiler<sup>11</sup>, A. Stein<sup>12</sup>, D. Modest<sup>3</sup>, C. Pauligk<sup>13</sup>, I. Virchow<sup>1</sup>, J. Siveke<sup>1</sup>, S.-E. Al-Batran<sup>13</sup>, M. Schuler<sup>1</sup>, T. Goetze<sup>13</sup>

<sup>1</sup>University Hospital Essen, <sup>2</sup>University Hospital Mannheim, <sup>3</sup>Charité Berlin, <sup>4</sup>Practice for Oncology Ravensburg, <sup>5</sup>University Hospital Ulm, <sup>6</sup>University Medical Center Hamburg-Eppendorf, <sup>7</sup>University Hospital Disseldorf, <sup>8</sup>St. Marien Hospital Amberg, <sup>8</sup>Hospital Maria Hilf Mönchengladbach, <sup>10</sup>Catholic Hospital Essen-Mitte, <sup>11</sup>MvZ Oncology, Klinik Dr. Hancken Stade, <sup>12</sup>Hematology Oncology Practice Hamburg, <sup>13</sup>Institute of Clinical Cancer Research, UCT-University Cancer Center, Frankfurt am Main, Germany



Sotorasib, panitumumab, and FOLFIRI in the first-line setting for *KRAS* G12C-mutated metastatic colorectal cancer: safety and efficacy analysis from the phase 1b CodeBreaK 101 study

Salvatore Siena,<sup>1</sup> Kensei Yamaguchi,<sup>2</sup> Jose Ruffinelli,<sup>3</sup> Elena Corral,<sup>4</sup> Yasutoshi Kuboki,<sup>6</sup> Chiara Cremolini,<sup>8</sup> Ivan Victoria,<sup>7</sup> Elena Elez,<sup>8</sup> John Strickler,<sup>9</sup> Muhammad Furqan,<sup>10</sup> Babar Bashir,<sup>11</sup> Chidozie Nduka,<sup>12</sup> Jane Hippenmeyer,<sup>13</sup> Emily Chan,<sup>14</sup> Calhong Xia,<sup>14</sup> Toshiki Masuishi<sup>15</sup>

\*\*Università degli Studi di Milano and Grando Ospedale Metropolitano Niguarda, Milan, Italy; \*\*The Cancer Institute Hospital of JFCR, Tokyo, Japan; \*\*Catalain Institute of Oncology, Hospital Duran i Raynals, Barcelona, Spain; \*\*Hospital Universitario Ramón y Cajal, Madrid, Spain; \*\*National Cancer Center Hospital East, Kashiwa, Japan; \*\*University of Pisa, Pisa, Italy; \*\*Hospital Clinic of Barcelona, Barcelona, Spain; \*\*Outiversity Hospital and Institute of Oncology, Universital Authonoma de Barcelona, Barcelona, Spain; \*\*Duke University Medical Center, Durham, NC, USA; \*\*University of lowa, lowa City, IA, USA; \*\*Isidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA, USA; \*\*Amgen Uxbridge, Uxbrid



Pembrolizumab in combination with CAPOX and bevacizumab in patients with microsatellite stable (pMMR/MSS) metastatic colorectal cancer and a high immune infiltrate: a proof of concept study.

Preliminary results of FFCD 1703 POCHI trial



David Tougeron, J.F. Emile, A. Bodere, E. Barbier, J. Bez, L.M. Dourthe, H. Perrier, S. Corbinais, V. Le Brun-Ly, K. Bideau, B. Chibaudel, F. Khemissa, J. Hartwig, M.Laly, A. Lievre, C. Toullec, M. Muller, P. Laurent-Puig, C. Lepage, J. Taieb.

Poitiers, Boulogne-Billancourt, Saint Malo, Dijon, Strasbourg, Marseille, Caen, Limoges, Quimper, Levallois-Perret, Perpignan, Caluire et Cuire, La Roche-sur-Yon, Rennes, Avignon, Nancy, Paris.

