

Neoadjuvant chemotherapy in MSS colon cancer: Who, what and for how long?

Jenny Seligmann

Leeds, United Kingom

DECLARATION OF INTERESTS

Jenny Seligmann

Consultancy/ Advisory:	/: Astra-Zeneca, Boehinger-Ellison, BMS, GSK, Pierre Fabre Medicament, Me				
	Serono, Seagen, Servier, Takeda,				
Speaker Fees:	GSK, Merck Serono, Pierre Fabre Medicament, Servier, Takeda				
Research Funding:	Amgen, Pierre Fabre Medicament, Merck-Serono, GSK				
Travel:	Takeda				
CME:	GI Connect, OncLive				

How should this patient be treated?

- 1st presentation
- Fit for surgery & systemic therapy
- No metastatic disease

MSI status is critical in LACC

Immunotherapy works for MSI-H!

ongress

....Chemotherapy less helpful for MSI-H

MSS & MSI need to be developed separately....

Andre, NEJM, 2021; Chalabi, NEJM, 2024; Morton, JCO, 2022; Deng, JCO, 2024

Neoadjuvant immunotherapy

Neoadjuvant treatment for MSS LACC: from evidence generation to implementation

- Why neoadjuvant chemotherapy can help make gains in the MSS population
- Who should we prioritise?
- What do we give and for how long?
- Implementation

What is wrong with the status quo?

Stage III defined by post-operative TNM stage having Surgery & adjuvant chemo by ESMO Guidance Standard

Jenny Seligmann

Problem Have disease recurrence despite 1 with current SOC Need: ent New treatment _c strategies beyond Id - current SOC

ESMO^{Congress} Could neoadjuvant treatment improve outcomes?

Potential advantages & disadvantages of a neoadjuvant therapy in LACC

- Positive experience in other cancers
- Early treatment of micro-metastases
- Downstaging for complete surgical resection
- Prime anti-tumour response when tumour microenvironment intact and tumour antigen heterogeneity may be minimal

- Will patients not proceed to surgical resection?
 - PD in neoadjuvant window
 - Chemotherapy toxicity
- Will NAC lead to an increase in peri-operative complications?
- Can we select appropriate patients for neoadjuvant therapy using radiological staging assessment?

Neoadjuvant Chemotherapy in LACC

Preoperative Chemotherapy for Operable Colon Cancer: Mature Results of an International Randomized Controlled Trial

Dion Morton, MD¹; Matthew Seymour, MD²; Laura Magill, PhD³; Kelly Handley, PhD³; James Glasbey, MD¹; Bengt Glimelius, MD⁴; Andy Palmer³; Jenny Seligmann, MD²; Søren Laurberg, MD⁵; Keigo Murakami, MD⁶; Nick West, MD⁶; Philip Quirke, FMedSci⁶; and Richard Gray, MSc⁷; on behalf of the FOxTROT Collaborative Group

2022 ASCO

Perioperative Chemotherapy With mFOLFOX6 or CAPOX for Patients With Locally Advanced Colon Cancer (OPTICAL): A Multicenter, Randomized, Phase III Trial

Huabin Hu, Meijin Huang, Yunfeng Li, Ziqiang Wang, Xiaozhong Wang, Ping Liu, Ruyi Zhang, Hao Zhang, Zhongcheng Huang, Haiping Pei, Yongming Zeng, Jiajun Lai, Wenbin Chen, Jiansi Chen, Zhijie Ding, Hongbo Wei, Qingwen Xu, Jigui Chen, Jianping Wang, Yanhong Deng⊠

RANDOMIZED CONTROLLED TRIAL

Perioperative FOLFOX 4 Versus FOLFOX 4 Plus Cetuximab Versus Immediate Surgery for High-Risk Stage II and III Colon Cancers

A Phase II Multicenter Randomized Controlled Trial (PRODIGE 22)

M. Karoui, MD, PhD,*⊠ A. Rullier, MD,† G. Piessen, MD, PhD,‡ J. L. Legoux, MD,§ E. Barbier, MD,¶ C. De Chaisemartin, MD,|| C. Lecaille, MD,** O. Bouche, MD, PhD,†† H. Ammarguellat, MD,‡‡
F. Brunetti, MD,§§ M. Prudhomme, MD, PhD,¶¶ J. M. Regimbeau, MD, PhD,|||| O. Glehen, MD, PhD,*** A. Lievre, MD, PhD,††† G. Portier, MD, PhD,‡‡‡ J. Hartwig, MD,§§§ G. Goujon, MD,¶¶¶ B. Romain, MD, PhD,|||||| C. Lepage, MD, PhD,**** and J. Taieb, MD, PhD††††, 2023 ASCO

Phase III randomized clinical trial comparing the efficacy of neoadjuvant chemotherapy and standard treatment in patients with locally advanced colon cancer

The Scandinavian NeoCol trial

.epo

rts

Study	No of patients	Median age	% pts with rT4	% pts with rN +ve	Completed NAC	Peri-op safety
FOxTROT	1052	65	25.5%	75.3%	90%	\triangleleft
PRODIGE -22	104	63.5	11.5%	76.9%	96%	\checkmark
OPTICAL	738	56	75.4%	77.2%	62%	\diamond
NEOCOL	250	66	26%	-	-	\diamond

Morton et al, JCO 2023; Karoui et al, Ann Surg 2020; Hu et al, JCO, 2024, Jensen, ASCO Annual Meeting 2023

Randomized trials of neoadjuvant chemo in LACC

Morton et al, JCO 2023; Karoui et al, Ann Surg 2020; Hu et al, JCO, 2024, Jensen, ASCO Annual Meeting 2023

FOxTROT Trial: Outcomes for pMMR patients

- MMR status available for 914/1052 (86.8%) of patients
- 20.2% dMMR; 79.8% pMMR
 or unknown

3 year DFS: NAC vs Upfront surgery MSS pts (80.7% vs 75.8%)

Morton et al, JCO, 2023

OPTICAL Trial: Outcomes for pMMR patients

 MMR status available for 87% of patients

Pathological response rates in pMMR patients treated with NAC

3 year DFS for NAC vs upfront surgery in MSS pts = 79.9% vs 74.0% (HR = 0.68 [0.61-0.99])

	NA	C Group	Upfrom	t Surgery Group			
Subgroup	Events/Patients	3-Year DFS, % (95% CI)	Events/Patients	3-Year DFS, % (95% CI)	_	Stratified HR (95%CI)	P for Interaction
Overall	71/371	82.1 (78.2-86.1)	89/373	77.5 (73.3-81.9)	⊢ ●—	0.74 (0.54-1.03)	
Age, years							.136
<70	68/349	81.5 (77.5-85.7)	78/344	78.6 (74.3-83.2)	H.	0.80 (0.57-1.13)	
≥70	3/22	90.9 (79.7-0.99)	11/29	65.2 (49.8-85.2)		0.42 (0.09-2.06)	
Sex							.040
Male	49/214	78.8 (73.4-84.6)	50/223	79.1 (73.8-84.7)		0.91 (0.60-1.39)	
Female	22/157	86.5 (81.3-92.0)	39/150	75.3 (68.6-82.7)		0.54 (0.30-0.95)	
ECOG score							.363
<u>^</u>	F 4/00F	01 4 (70 4 00 0)	05/074	70.0 (70.4.02.0)		0.70 (0.54 4.45)	
Mismatch repair stat	us						.287
Proficient	54/268	80.4 (75.7-85.4)	74/285	75.5 (70.6-80.7)	H •	0.68 (0.47-0.99)	
Deficient	3/43	93.0 (85.7–99.9)	9/48	82.9 (72.7–94.4)	•	0.28 (0.06-1.36)	
c14	56/290	81.6 (77.2-86.3)	67/271	76.2 (71.2-81.6)		0.71 (0.49-1.02)	
Clinical N stage							.292
cN0	18/76	81.4 (73.1-90.7)	21/94	78.0 (69.9-87.0)	•	1.18 (0.59-2.36)	
cN1-2	53/295	82.3 (78.0-86.8)	68/279	77.4 (72.5-82.5)	→→	0.65 (0.45-0.94)	
Tumor differentiation							.410
Well/moderate	49/298	85.2 (81.2-89.4)	61/284	79.6 (74.9-84.5)	\rightarrow	0.70 (0.47-1.03)	
Poor	21/68	68.7 (58.4-80.8)	28/86	69.9 (60.6-80.6)		0.75 (0.35-1.58)	
Baseline CEA, ng/mL							.079
≤5	40/216	83.5 (78.6-88.6)	39/213	83.2 (78.2-88.5)		0.97 (0.60-1.55)	
>5	31/155	80.3 (74.2-86.9)	50/160	70.0 (63.2-77.6)	⊢ ●−−−1	0.56 (0.34-0.92)	
Mismatch repair status	s						.287
Proficient	54/268	80.4 (75.7-85.4)	74/285	75.5 (70.6-80.7)	→	0.68 (0.47-0.99)	
Deficient	3/43	93.0 (85.7-99.9)	9/48	82.9 (72.7-94.4)	H + + + + + + + + + + + + + + + + + + +	0.28 (0.06-1.36)	

Favors NAC Favors Upfront Group Surgery Group

What effect is needed to change practice – 3 yr DFS?

NAC vs Upfront surgery MSS pts (5.3%)

Addition of oxaliplatin to 5FU (5.3%)

Do some patients benefit more from NAC?

Subgroup analysis from OPTICAL and FOxTROT

Highest risk clinically staged tumors appear to benefit MOST from NAC

Do some patients benefit more from NAC?

Subgroups Analysis on DFS

DFS in Subgroup of Female Patients

Pathological response post NAC by sex

Same effect not seen in FOxTROT

Hu et al, JCO, 2024;

	mFOL	mF0LF0X6 (n = 238)			CAPOX (n = 102)		
Adverse Events	Grade 1-2	Grade 3	Grade 4	Grade 1-2	Grade 3	Grade 4	
Any adverse event	223 (94)	63 (26)	16 (7)	86 (84)	17 (17)	2 (2)	
Serious adverse events	0	12 (5)	4 (2)	0	2 (2)	2 (2)	
	Most co were neu	Most common grade 3/4 were neutropenia (16%) &			Most common grade 3/4 were anemia (5%) &		

anemia (11%)

BARCELONA ESVO

Hu et al, JCO, 2024

hand-foot (5%)

- No results on differential efficacy No data on diarrhea rates
- All patients were planned to have
 6 months duration of treatment

Delivering either drug reasonable, but:

- Consider baseline characteristics of patients as per adjuvant chemo choices
- · Less confidence in applicability to older patients/ co-morbidities
- Consider duration of planned treatment as per IDEA recommendations

How much pre-operative treatment to give?

BARCELONA SOLUTION

6 weeks (FOxTROT)

- pCR rate of 2.3%
- 44% no response
- 90% completed planned chemotherapy
- 3 year DFS = 81%

Well tolerated

Lower rates of pathological response Stop/ start impact 12 weeks (OPTICAL)

- pCR rate of 10%
- 34% no response
- 62% completed planned chemotherapy
- 3 year DFS = 79.9%%

Higher pCR rate for those who completed

Deliver total neoadjuvant treatment Poorer compliance

Higher rate of symptomatic progression

Duration of pre-operative treatment: speculation

Adjuvant chemotherapy following NAC

- Can you de-escalate AC if good
 pathological response post NAC
- 41% of patients did not receive AC following NAC
- Elements of design limit interpretation
 - Aim 10% improvement with NAC
 - N = 250
- ctDNA may help this decision

My recommendation is to complete planned chemotherapy duration based upon IDEA recommendations

Study design

Larsson, ASCO Annual Meeting, 2023

congress

BARCELONA 2024

FC

Morton et al, JCO, 2023; Hu et al, JCO, 2024

Strategies to improve neoadjuvant outcomes in MSS LACC

The Accuracy of Radiological Staging in Colon Cancer has been Well Studied

Diagnostic Accuracy of CT for Local Staging of Colon Cancer: A Systematic Review and Meta-Analysis

Elias Nerad^{1,2} Max J. Lahaye³ Monique Maas³ Patty Nelemans⁴ Frans C. H. Bakers⁵ Geerard L. Beets^{2,6} Regina G. H. Beets-Tan^{2,3} OBJECTIVE. The purpose of this article is to determine the accuracy of CT in the detection of tumor invasion beyond the bowel wall and nodal involvement of colon carcinomas. A literature search was performed to identify studies describing the accuracy of CT in the staging of colon carcinomas. Studies including rectal carcinomas that were inseparable from colon carcinomas were excluded. Publication bias was explored by using a Decks funnel plot asymmetry test. A hierarchic summary ROC model was used to construct a summary ROC curve and to calculate summary estimates of sensitivity, specificity, and diagnostic odds ratios (ORs). CONCLUSION. On the basis of a total to 13 studies, podel sensitivity, specificity, and

Hewish et al., AJR Am J Roentgenol. 2016 Nov;207(5):984-995

Clinical Radiology 65 (2010) 708-719

Original Paper

Diagnostic precision of CT in local staging of colon cancers: a meta-analysis

S. Dighe ^{a, d}, S. Purkayastha ^{b, c}, I. Swift ^d, P.P. Tekkis ^c, A. Darzi ^c, R. A'Hern ^e, G. Brown ^{a, *}

Dighe et al., Clin Radiol. 2010 Sep;65(9):708-19

Slide courtesy of James Platt

Comparison of radiological & pathological staging

ongress

- T stage
 - Overall agreement = 60.0%
 - T1/2 vs T 3/4 PPV = 94.5%
- N stage
 - Overall agreement = 54.1%
 - PPV for N0 vs N+ = 57.1%
- EMVI status
 - PPV for EMVI +/- = 50.7%

Platt et al, ESGAR Congress, 2023

Do other factors influence performance?

MMR Proficient vs. MMR Deficient

Higher neutrophil count associated with N1/2 'status' (P = 0.0077)²

Platt et al, ESGAR Congress, 2023

N	N

Radiological Feature		Hazard ratio (95% CI) For any recurrence	P value ^c
T stage ^b	ТЗ	1.0	
	Τ4	1.57 (1.19-2.07)	0.001
Depth of extramural extension	Continuous	1.03 (1.02-1.04)	0.00001
	≤7	1.0	
	>7	1.67 (1.29-2.18)	0.0001
Maximum tumour thickness	Continuous	1.16 (1.06-1.27)	0.001
	≤25	1.0	
	>25	1.59 (1.21-2.09)	0.001
Node ≥10mm	No	1.0	
	Yes	1.40 (1.07-1.83)	0.01
EMVI	Absent	1.0	
	Present	1.41 (1.07-1.86)	0.02

Platt et al, ESMO Congress, 2024

Beyond T stage

Slide courtesy of Dr James Platt

Patient selection – how to move forward

- Engagement with radiology
- Prioritise training in planned studies
- Transition toward radiological phenotyping – don't limit to information collected by TNM
- Future likely to involve artificial intelligence algorithms & multi-modal risk stratification

Jenny Seligmann

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

- Clinical need to **improve** outcomes in MSS localized colon cancer
- Consistent moderate efficacy demonstrated with neoadjuvant chemotherapy

• 5% with just change in sequence!

- Most benefit likely with most advanced tumors
- 6 or 12 weeks NAC reasonable depending upon clinical situation
- Need for improvements in patient selection
 - Ongoing development need rather than Stop/Go
- Implementation requires buy-in from multidisciplinary team

Acknowledgements

- To all the multidisciplinary FOxTROT collaborators from contributing international centres
- To Yorkshire Cancer Research for FOxTROT Platform Core Funding
- Cancer Research UK and Yorkshire Cancer Research for core funding of the FOxTROT Trial and associated laboratory research
- All of the patients and carers who participate in this research
- Pernille for administrative support

European Society for Medical Oncology (ESMO) Via Ginevra 4, CH-6900 Lugano T. +41 (0)91 973 19 00 esmo@esmo.org

esmo.org