

Personalisation of surgical and systemic approaches in 2024: Optimising cure and quality of life in gastroesophageal cancer

To operate or not operate: Personalized surgical approaches in the curative setting

CHU Lille, France, 15 september 2024

Declaration of interest

Guillaume Piessen

BMS: consulting ,board

Nestlé: consulting

Astellas pharma: consulting

Medtronic: travel, accommodation

MSD: travel, accommodation, consulting, lecture

Daiichi: consulting

Elivie: lecture

Strycker: consulting

To operate or not operate?

Patient Assessment

Age, comorbidity, performance status

Tumour Characteristics

Tumour size, cTNM

Surgical Technique Selection

Extensiveness of resection and surgical approach

Molecular characteristics

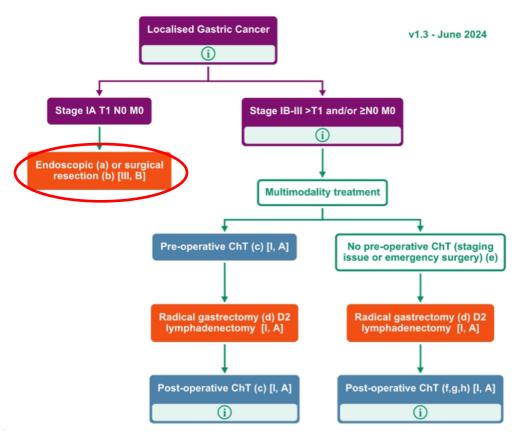
Patients preferences

Personalized surgical approaches in the cu

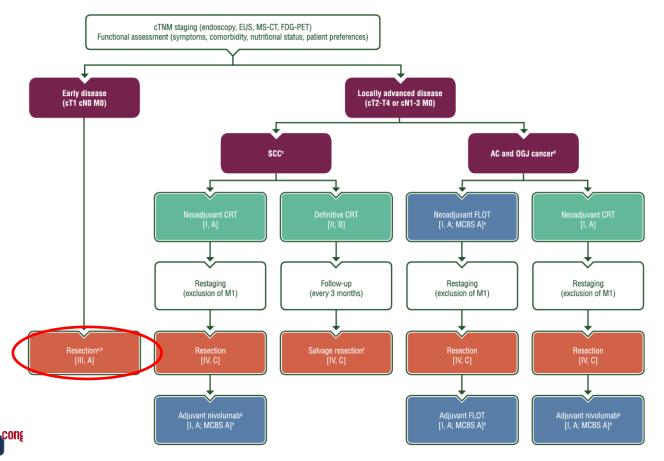
Early

Locally advanced **Oligometastatic**

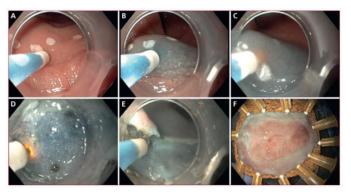
Surgery /Endoscopy



3


5

Current ESMO guidelines: gastric cancer



Current ESMO guidelines: esophageal/OGC cancer

++ ESD, en bloc resection

► Table 2 Univariable and multivariable subdistributional hazard regression analysis of risk factors associated with metastases (no metastases n = 170, metastases n = 78).

Variable	Univariable subdistribution regression analysis	nal hazard	Multivariable subdistributional hazard regression analysis			
	SHR (95 %CI)	P value	SHR (95 %CI)	P value		
Sex, n (%)			-	-		
Female	Reference					
Male	1.51 (0.74-3.10)	0.26				
Differentiation grade						
 G1/2 (good/moderate) 	Reference		Reference			
• G3/4 (poor/undifferentiated)	1.78 (1.20-2.65)	< 0.01	1.01 (0.66-1.55)	0.96		
Submucosal invasion (per 500 µm)	1.13 (1.08-1.18)	< 0.01	1.08 (1.02-1.14)1	< 0.01		
LVI						
■ No	Reference		Reference			
■ Yes	3.58 (2.45-5.22)	< 0.01	2.95 (1.95-4.45)	< 0.01		
Tumor size (per 10 mm)	1.39 (1.25-1.53)	< 0.01	1.23 (1.10-1.37)2	< 0.01		

 $SHR, subdistribution\ hazard\ ratio;\ CI,\ confidence\ interval;\ LVI,\ lymphovascular\ invasion.$

	LVI-, % (95%CI)	LVI+, % (95%CI)	Tumor size
sm1	5.9 (2.3–11.2)	15.7 (6.0–29.3)	
sm2	7.3 (2.6–13.8)	19.3 (6.3–36.8)	<20 mm
sm3	14.1 (7.9–21.9)	34.7 (19.7–50.8)	
sm1	16.1 (6.2–29.2)	38.8 (17.0–61.4)	
sm2	19.4 (8.6–32.2)	45.6 (20.8–67.9)	≥20 mm
sm3	35.2 (25.8–44.7)	70.1 (60.5–78.7)	

▶ Fig. 3 Score chart for 5-year metastases risk (both lymph node metastases and distant metastases) for different combinations of histopathological variables in patients with pT1b esophageal adenocarcinoma. LVI, lymphovascular invasion; CI, confidence interval; sm, submucosa.

¹ For every 500 µm increase in submucosal invasion. ² For every 10 mm increase in tumor size.

CONGRESS study

- Rate of LNM was 13.5%
- On ER staging, tumour depth, LVI or signet cells were associated with LNM
- But non ER LN risk (R0, <SM2, no LVI, no indiff): 15.3% of LNM
- Highlights the need for urgent prospective study.

ESMO and ESGE guidelines

For both histological subtypes, patients with involved deep endoscopic resection margins or significant risk factors for lymph node metastases should be offered further resective surgery with appropriate lymphadenectomy; however, chemoradiotherapy (CRT) could be considered as a treatment option for stage IA SCC with organ preservation.⁴⁹

T1 tumours which do not meet the criteria for endoscopic resection require surgery, although less extensive surgery than other gastric cancers. Lymph node dissection for T1 tumours may be confined to perigastric lymph nodes and include local N2 nodes (D1+ lymphadenectomy, with variation in nodal groups dissected according to the site of cancer).

Complete staging with EUS and CT/PET-CT at the time of diagnosis is crucial to identify patients with synchronous LNM. In the absence of these (i. e. for pT1bN0M0 disease), the decision on further management should be guided by patient characteristics (co-morbidity, surgical risk) and patient preference. After discussion in a multidisciplinary team meeting, chemotherapy and/or radiotherapy and/or surgery, or a conservative approach consisting of intensified follow-up with EGD, EUS, and CT/PET-CT in the setting of an expert center can be considered.

Lordick et al, Ann Oncol 2022 Obermmanova et al, Ann Oncol 2022 Weustein, Endoscopy 2023

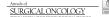
Prospective Endoscopic Follow-up of Patients With Submucosal Esophageal Adenocarcinoma (The PREFER Trial)

Conservative approach

ClinicalTrials.gov ID 1 NCT03222635

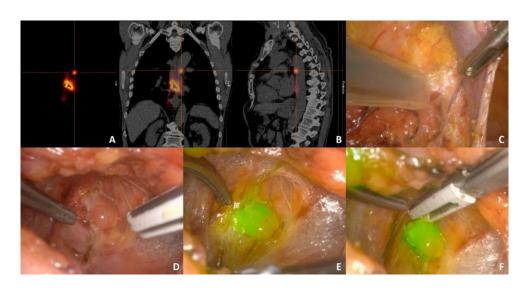
Sponsor ① Academisch Medisch Centrum - Universiteit van Amsterdam (AMC-UvA)

Information provided by 1 prof. dr. J.J.G.H.M. Bergman, Academisch Medisch Centrum - Universiteit van Amsterdam (AMC-UvA) (Responsible Party)


- Intensive follow-up
 - gastroscopy+EUS every 3-6 months +repeated CT/PET-CT at 12 months
- Interim analysis after a median follow-up duration of 22 months
 - Showed LNM in 6/120 patients (5 %)
 - All these patients could be treated by rescue therapy
 - esophagectomy
 - selective surgical resection of the affected lymph nodes
- Predefined follow-up period of 5 years and the final results are awaited

injected endoscopically around the scar 24H before

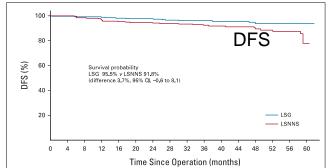
- Preoperative imaging
- Sentinel nodes identification using
 - Thoracolaparoscopic gammaprobe
 - Fluorescene
- Feasible 100%, 3 SN (1-6)
 - 10% : micrometastasis

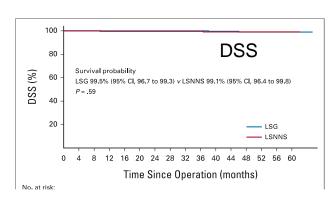

Ann Surg Oncol (2023) 30:4002-4011 https://doi.org/10.1245/s10434-023-13317-6

ORIGINAL ARTICLE - THORACIC ONCOLOGY

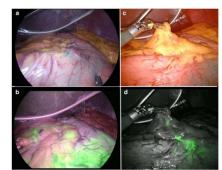
Feasibility and Safety of Tailored Lymphadenectomy Using Sentinel Node-Navigated Surgery in Patients with High-Risk T1 Esophageal Adenocarcinoma

Charlotte N. Frederiks, MD^{1,2}, Anouk Overwater, MD^{1,2}, Jacques J. G. H. M. Bergman, MD, PhD³, Roos E. Pouw, MD, PhD³, Bart de Keizer, MD, PhD³, Roed J. Bennink, MD, PhD³, Lodewijk A. B Frosens, MD, PhD³, Sybren L. Meijer, MD, PhD³, Richard van Hillegersberg, MD, PhD³, Mark I. van Berge Henegouwen, MD, PhD^{3,0}, Jelle P. Ruurda, MD, PhD^{3,5}, Suzanne S. Gisbertz, MD, PhD^{3,0}, and Bas La. A. M. Westen, MD, PhD³.

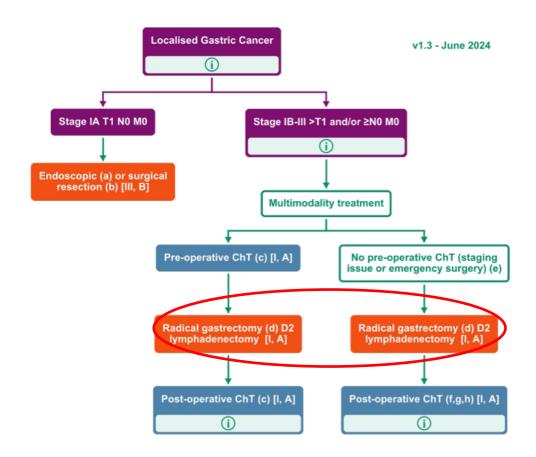


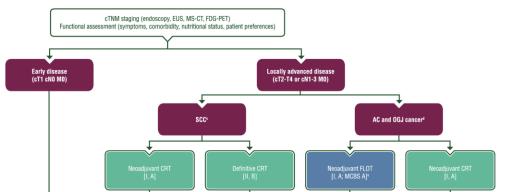

- Laparoscopic Sentinel Node Navigation
 Surgery for Stomach Preservation in Patients
 With Early Gastric Cancer: A Randomized
 Qinical Trial
- Voung-Vibo Kim, MD'; Jae-Snok Min, MD'; Hong Man Yoon, MD'; Ji Yeong An, MD'¹, Bang Wool Eom, MD'; Hong Hun, MD';

 → Young-Vibo Kim, MD'; Ayu Snok Cho, MD'; Young-Kyu Park, MD'; M Ran Jung, MD'; Ji-Ho Park, MD'; Woo Jan Hyung, MD';

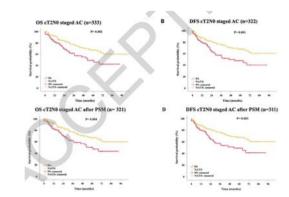

 O' Sang-Ho Joon, MD'; Myoong-Gorf Kook, MD; Min Han, MS'; Byung-Ho Nam; PhD'²; and Kaun Won Ryu, MD; PhD'

 Sang-Ho Joong, MD'; Myoong-Gorf Kook, MD; Min Han, MS'; Byung-Ho Nam; PhD'²; and Kaun Won Ryu, MD; PhD'
- Stage IA<3cm, randomized between conventional surgery and SN
- Dual ICG and Technetium- 99m human serum albumin tracers intraoperatively injected
 - Conservative surgery if SN negative : success 81%
 - Conventional surgery otherwise
- Negative trial on DFS (5%) but similar DSS/OS
- Improved QOL and nutrition





Current ESMO guidelines: gastric cancer



cT2N0

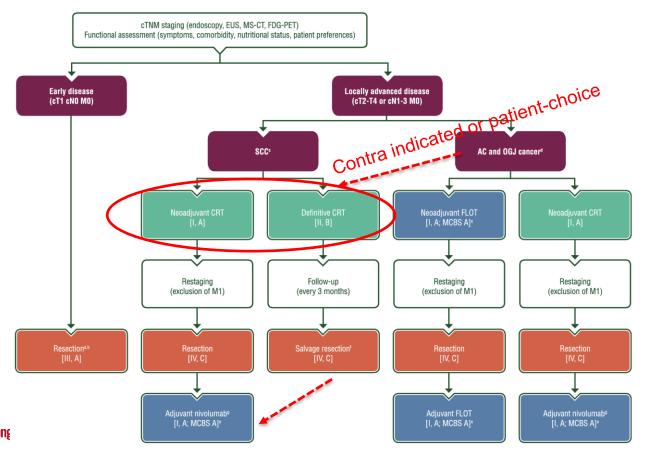
- Recent multicentric international study
 - 35% understagged on pT and 36% understagged on pN
 - Inacurracy of work-up so NAT for every patients
 - But 49% overstagged

- Endoscopic reassessment in ct2 patients: 60 % dowstagged
 - Among them 80% of success of endoscopic resection
 - 40 % restagged and treated with success with endoscopy alone

Obermannova et al, Ann Oncol 2022 NCCN 2023 Markar et al, Eur J Cancer 2016 Wirsik et al, Ann Surg 2024 Van de Ven et al, Endoscopy 2022

TUMOR

cT1b-c<mark>T2</mark>,N0 (low-risk lesions: <3 cm, well


differentiated)o

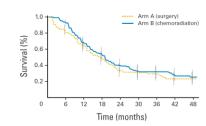
(high-risk lesions: LVI, ≥3 cm, poorly differentiated) cT1b–cT2.N+ or

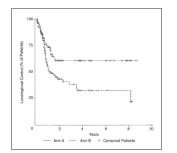
cT3-cT4a.Anv NW

CLASSIFICATION9

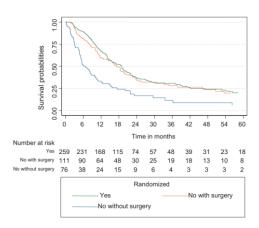
Current ESMO guidelines: esophageal/OGC cancer

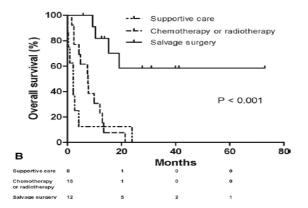
2 RCT (GESG and FFCD9102)


Only middle/upper third SCC


90% SCC, randomisation of clinical responders

Non inferiority in terms of 2 years OS

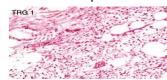

- Better locoregional control in the surgery arm
 - at the price of a higher risk of early mortality

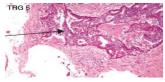


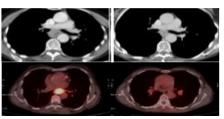
Definitive chemoradiotherapy (possibly followed by resection)				
Main goal of dCRT	To cure esophageal cancer without surgery	96		
Indications for treatment with dCRT	T4b carcinoma, proximal tumor, patients unfit for surgery and patients who refuse surgery	93		
Chemotherapy regimen	A combination of platinum along with taxane, platinum in combination with 5-FU derivate, or platinum combined with vinorelbine	82		
Total dose of radiotherapy	50.4 Gy	91		
Surgery after dCRT	Salvage surgery	96		

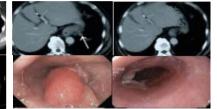
Persistent tumour

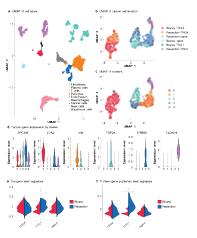
Recurrence tumour


phase II SCC stage II/III (T4 excluded) 5FU-cisplat and 50,4 Gy 59% cCR


Endoscopic salvage 5% <200µm
Salvage resection 27% 76% R0, 40% at 3 years



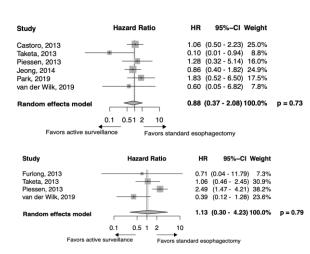

Concept of response evaluation


How to predict?

Using scRNA sequencing, rare population of residual cancer celles withing the scar tissue of ypT0N0 patients

Diagnostic tests required during response evaluations		100	100
Diagnostic tests which should be performed during response evaluations		Diagnostic CT-scan	76
		18 F-FDG PET/CT scan	89
		Upper endoscopy with (bite-on-bite) biopsies	96
		Endoscopic ultrasonography with fine-needle aspiration of suspicious lymph nodes	91
		PET/CT combined with diagnostic CT-scan	75




64% ypT0N0
In other words: 36% residual tumor

Van der Zijden et al , Ann Surg Oncol 2024 Noordman, Lancet Oncol 2022 Piessen et al, Ann Surg 2013 Walker et al, Br J Surg 2024

Metaanalysis (7 studies) individual data

Similar results regardless of histological type

Surveillance arm: Local recurrence: 34% at 2 years and 40% at 5 years / 95% R0 salvage surgery

Neoadjuvant Chemoradiotherapy and Surgery for Esophageal Squamous Cell Carcinoma Versus Definitive Chemoradiotherapy With Salvage Surgery as Needed: The Study Protocol for the Randomized Controlled NEEDS Trial

Neoadjuvant CRT with weekly carboplatin and paclitaxel and radiation in 1.8 fractions to 41.4 (in accordance with the CROSS t protocol) followed by preplanne esophagus in locally advanced stages (cT1 N+ or cT2-4a any N; M0)

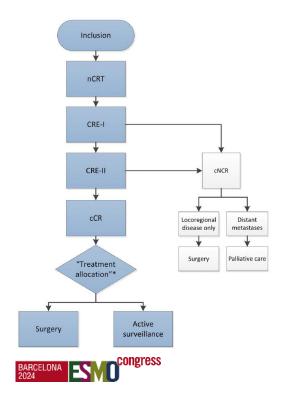
Experimental arm
Definitive CRT using any combin of two chemotherapy (platin-tax and platin-fluoropyrimidin) and radiotherapy regimens (1.8 to 50 Gy and 2.0 to 50 Gy) followed by surveilled as a separate of the protocol of the surveilled and separate of the protocol of the surveilled and separate of the protocol of the surveilled and separate of the protocol of t

Main hypothesis 1:

Overall survival after dCRT with surveillance and salvage surgery when needed is **non-inferior** to OS after nCRT + surgery

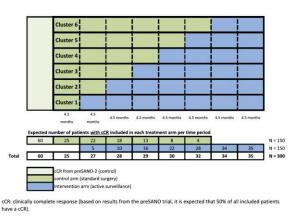
Main hypothesis 2:

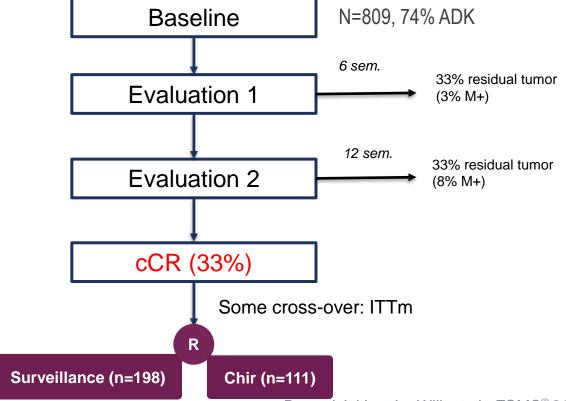
HRQoL is better after dCRT + surveillance and salvage surgery only when needed


Main hypothesis 3:

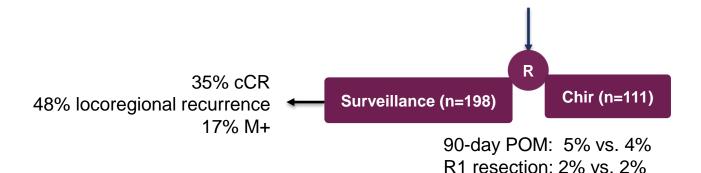
Eating restrictions are better after dCRT + surveillance and salvage surgery only when needed

PreSANO ans SANO trial



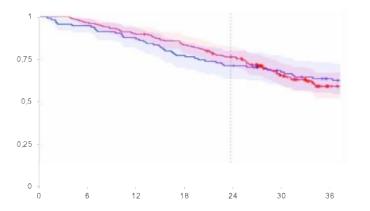

Neoadjuvant chemoradiotherapy plus surgery versus active surveillance for oesophageal cancer: a stepped-wedge cluster randomised trial

Bo Jan Noordman¹, Bar P. L. Wijnhoven¹, Speer M. Lagaste¹, Jurjen J. Boonstra², Peter Paul L. O. Coeve¹, Jan Willem T. Delker¹, Michael Doblas¹, Ate van der Gaste¹, Josh Hesteram², Evotra K. Kouwenhouen³, Grad A. P. Nieuwenhuijzen³, Jann-Pierre R. P. Pierle¹, ²Camel Boman³, Joshman W. An Sandck³, Maurice J. C. van der Sangen³, Mendett N. Sore⁴, Manon C. W. Spaander⁴, Roeft Valkema¹, Edwin S. van der Zang³, Evour W. Styreberg¹, J. Jan R. van Lanschorf and not belief of the SANG-study group


phase III multicentric « stepped-wedge cluster » RCT ADC and SCC n=300 cCR randomised H0 non-inferiority (< 15% at 2 years) en OS

SANO trial: Active surveillance vs. Systematic surgery

SANO trial: Active surveillance vs. Systematic surgery



Overall: 12% organ preservation at 2 years

SANO trial: Active surveillance vs. Systematic surgery

- Median follow-up 38 months
 - At 2 years, median OS was not inferior in AS, HR 1.14 (0.74-1.78), p=0.55

- Median DFS: 35 vs. 49 months, HR 1.35, 95% CI 0.89-2.03, p=0.15
- Risk of metastasis at 30 months: 43% vs. 34% (OR 1.45, 95% CI 0.85-2.48, p= 0.18
- HRQOL was statistically significantly better at 6 months (p=0.002) and 9 months (p=0.007)

Perspectives

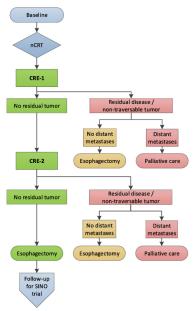


Fig. 1 Flow chart of the preSINO trial. nCRT: neoadjuvant chemoradiotherapy; CRE-1: first clinical response evaluation, four to six weeks after completion of nCRT; CRE-2: second clinical response evaluation, 10-12 weeks after completion of nCRT

Accuracy of detecting residual disease after neoadjuvant chemoradiotherapy for esophageal squamous cell carcinoma (preSINO trial): a prospective multicenter diagnostic cohort study

Xiaobin Zhang^{1†}, Ben M. Eyck^{2†}, Yang Yang¹, Jun Liu³, Yin-Kai Chao⁴, Ming-Mo Hou⁵, Tsung-Min Hung⁶, Qingsong Pang⁷, Zhen-Tao Yu⁸, Hongjing Jiang⁸, Simon Law⁹, Ian Wong⁹, Ka-On Lam¹⁰, Berend J. van der Wilk², Ate van der Gaast¹¹, Manon C. W. Spaander¹², Roelf Valkema¹³, Sjoerd M. Lagarde², Bas P. L. Wijnhoven², J. Jan B. van Lanschot² and Zhigang Li¹¹

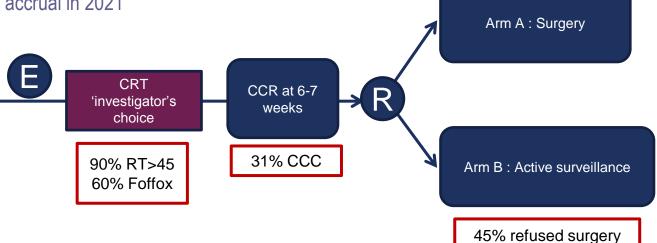
Asian vs. European SCC: less histological response after CROSS

Table 3 Pathological characteristics of the two matched cohorts

	Overall (n = 266)	Asia (n = 133)	Netherlands $(n = 133)$	P§
pCR*	95 (35.7)	37 (27.8)	58 (43.6)	0.010
ypT category ypT0 ypT1 ypT2 ypT3 ypT4 ypN category ypN0 ypN1 ypN1 ypN2	112 (42.1) 31 (11.7) 40 (15.0) 81 (30.5) 2 (0.8) 163 (61.3) 68 (25.6) 28 (10.5)	16 (12.0) 50 (37.6) 1 (0.8) 74 (55.6) 39 (29.3)	24 (18.0) 31 (23.3) 1 (0.8) 89 (66.9) 29 (21.8)	0.239
ypN3 No. of positive lymph	7 (2.6) 0 (0–1)	5 (3.8) 0 (0–1)	2 (1.5) 0 (0-1)	0.119
nodes, median (i.q.r.) ypT0 N+ Histological regression No response Partial response Complete response Not assessed	17 (6.4) 6 (2.3) 145 (54.5) 112 (42.1) 3 (1.1)	8 (6.0) 0 (0) 88 (66.2)	9 (6.8) 6 (4.5) 57 (42.9)	1.000

Genetic? Microbiome?

PRODIGE 32 - ESOSTRATE - FFCD1401



- Phase 2 trial randomized: 1 year survival at least 70%
 - 57 patients/arm
 - Stopped for slow accrual in 2021
 - ITTm •
- SCC/ADK de Eso/EGJ (Siewert I-II)
- >cT2N0
- Resectable patient

SCC 57%

Stratification:

- Centre
- Sex
- SCC vs ADK
- Dose RT (< 45 Gy vs ≥45 Gy)

PRODIGE 32 - ESOSTRATE – FFCD1401 : Active Surveillance vs. S

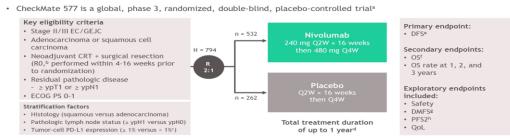
- After a median follow-up of 50,2 months
 - 1-year OS: 78% vs. 100%
 - 3 -year OS: 58,5% vs. 69,0%
 - 3-year treatable RFS: 47,8 % vs. 51,8 %
 - 25% presented a LRC in AS group
- Surgery
 - R0 resection rate :86% vs.100%
 - Complications grade 3-4 (Dindo-Clavien) :43% vs. 47%
 - no 90 day POM

Promising results but difficult to randomize surgery Oncogical Safety?

Potential limits of an organ preservation strategy

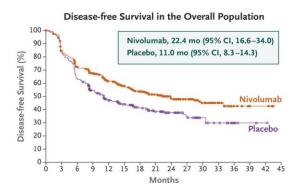
- AFC cohort
 - Radiotherapy dose > 55 Gy and volume center
 - influenced mortality (x7 and x3) and morbidity

- DICE study 2867 patients
 - Risk of POM
 - 0-50 (ref.)
 - 51-100 HR=1.54, 95%CI 1.04-2.29
 - 101-200 HR=2.14, 95%CI 1.37-3.35
 - > 200 HR=3.06, 95%CI 1.64-5.69


		After Matching			
Variable	Overall (N = 848)	SALV (n = 308)	NCRS (n = 308)	OR (95% CI)	P
In-hospital mortality, No. (%)	76 (9.0)	26 (8.4)	35 (11.4)	0.719 (0.414 to 1.250)	.241
In-hospital morbidity, No. (%)	514 (60.6)	196 (63.6)	188 (61.0)	1.117 (0.818 to 1.525)	.506
Anastomotic leak, No. (%)	111 (13.1)	53 (17.2)	33 (10.7)	1.732 (1.110 to 2.703)	.015
Conduit necrosis, No. (%)	6 (0.7)	4 (1.3)	1 (0.3)	_	NA*
Surgical site infection, No. (%)	123 (14.5)	57 (18.5)	38 (12.3)	1.614 (1.058 to 2.461)	.026
Chylothorax, No. (%)	26 (3.1)	10 (3.3)	10 (3.3)	1.000 (0.404 to 2.474)	> .999
Postoperative hemorrhage, No. (%)	5 (0.6)	1 (0.3)	3 (1.0)	_	NA*
Gastroparesis, No. (%)	10 (1.2)	3 (1.0)	3 (1.0)	_	NA*
Pulmonary, No. (%)	353 (41.6)	132 (42.9)	127 (41.2)	1.069 (0.786 to 1.454)	.672
Cardiovascular, No. (%)	115 (13.6)	42 (13.6)	43 (14.0)	0.973 (0.612 to 1.547)	.908
Thromboembolic, No. (%)	25 (2.9)	9 (2.9)	10 (3.3)	0.900 (0.374 to 2.167)	.814
Neurologic, No. (%)	25 (2.9)	5 (1.6)	8 (2.6)	0.998 (0.876 to 1.113)	.405
Clavien-Dindo score, No. (%)				_	.201
1	64 (7.5)	21 (6.8)	30 (9.7)		
II.	168 (19.8)	68 (22.1)	45 (14.6)		
IIIa	51 (6)	20 (6.5)	21 (6.8)		
IIIb	49 (5.8)	23 (7.5)	18 (5.8)		
IVa	86 (10.1)	33 (10.7)	30 (9.7)		
IVb	20 (2.4)	5 (1.6)	9 (2.9)		
V	76 (9)	26 (8.4)	35 (11.4)		

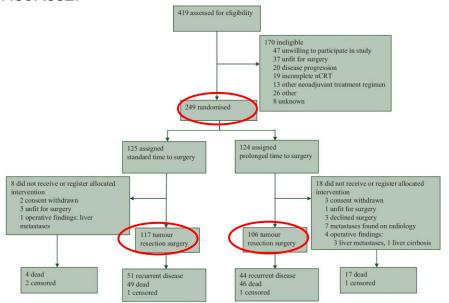
Potential limits of an organ preservation strategy

- Less histological response with 41 Gy, ++ Adk
- No adjuvant Nivolumab in the Surveillance arm

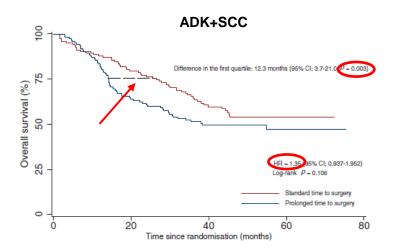

CheckMate 577 study design

- Median follow-up was 24.4 months (range, 6.2-44.9)
- Geographical regions: Europe (38%), United States and Canada (32%), Asia (13%), rest of the world (16%)

In progress: SANO-3 cohort and Skyscraper



Chidambaram et al, Ann Surg 2023 Mantziari et al, Ann Surg Oncol 2024 Kelly et al, New England J Med 2021

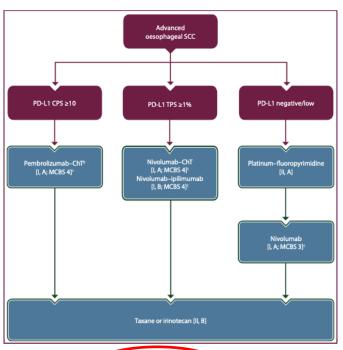

Potential limits of an organ preservation strategy

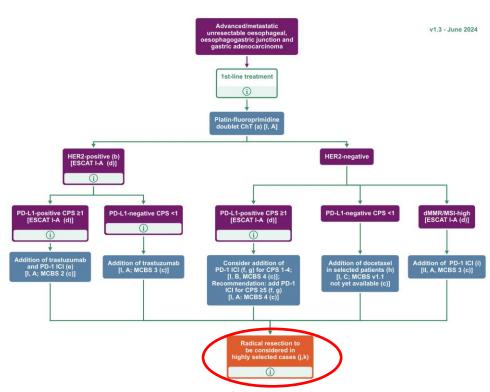
NeoRes2:

→ ypT0N0 rate (ADK) : 26% vs. 21% p=0,429

→ +35% risk of death

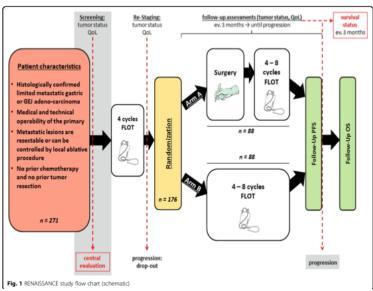
In conclusion, prolonged TTS did not improve histological complete response or other pathological endpoints, while there was a strong trend towards worse overall survival, suggesting caution in routinely delaying surgery for >6 weeks after nCRT.

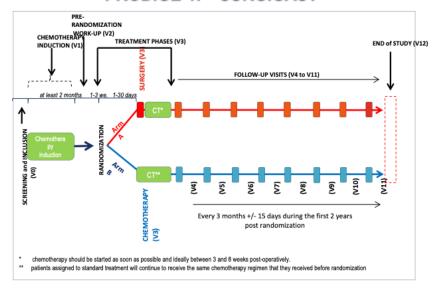

Perspectives


- Intensification of RCT with induction CT or ICI.
 - CROC trial (SCC), RACE-trial (ADC)
- CT
 - Triplet
 - JCOG1109 NeXT): 16% pCR ypT0(SCC)
 - ESOPEC: pCR 16.8%
 - CT intensified with IO (Dante, Keynote-585, Matterhorn)
 - In PDL1 + and dMMR/MSI high patients
- IO in dMMR/MSI high
 - Neonipiga trial 59% (Nivolumab+Ipilimumab)
 - Dewi trial in progress (Dostarlimab)

Clin trial UMIN000008086
Lorenzen et al, BMC Cancer 2020
Leong et al, ESM02024
Lang et al, Oncologist 2022
Li et al, Eur Cancer 2021
Kato et a, Lancet 2024
Lorenzen et al, J Clin oncol 2024
Shitara, Lancet Oncol 2023
Elizabeth Smyth et al., ESM0® 2023, Abs # LBA73
André et al, J Clin Oncol 2022

Current ESMO guidelines: metastatic setting

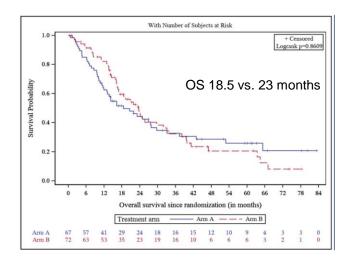


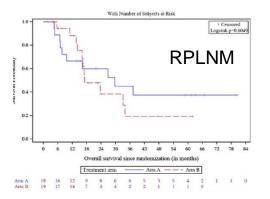

Surgery cannot be recommended outside the context of a clinical trial or in very selected cases, after a sufficiently long period of systemic treatment (standard of care) and after critical discussion in a multidisciplinary tumour board at a high-volume tertiary referral centre

Lordick et al, Ann Oncol 2022 Obermmanova et al, Ann Oncol 2022

The RENAISSANCE (AIO-FLOT5) trial: effect of chemotherapy alone vs. chemotherapy followed by surgical resection on survival and quality of life in patients with limited-metastatic adenocarcinoma of the stomach or esophagogastric junction – a phase III trial of the German AIO/CAO-V/CAOGI

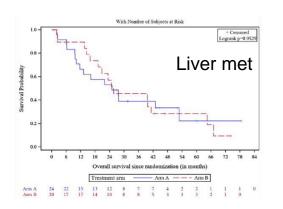
PRODIGE 47 - SURGIGAST

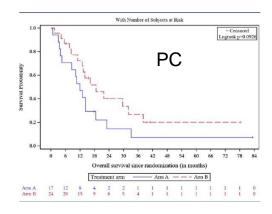



Renaissance trial

- >90% T3,N+
- A lower exposition of CT in the surgery arm
 - Cycle 5: 66% vs. 83%
 - Cycle 8: 43% vs. 74%
 - Cycle 12: 4% vs. 39%
 - At progression second line: 52% vs. 82%
- A cross over
 - 91% resection in arm A vs. 21% resection in arm B
- Post operative outcomes
 - morbidity 55% including 16% reoperation
 - 90-d POM 8%
- Only 50% of patients undergoing surgery had surgery of primary tumour + metastatic site
- R0?

Renaissance trial

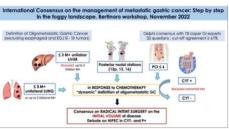



3 main cohorts

Liver metastasis: 49 patients (32%)

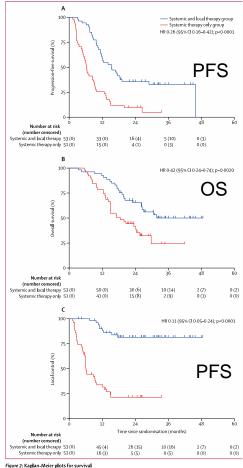
Peritoneal carcinomatosis: 41 patients (29%)

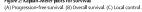
RPLNM: 28 patients (20%)


	Subgroup analysis : median OS (3 y OS)				
	RPLN	Liver met	Peritoneal carcinomatosis		
Arm A (N=67)	29.6 (45%)	24.9 (39%)	11.9 (7%)		
Arm B (N=72)	17 (19%)	25.7 (46%)	18.6 (27%)		

Renaissance trial: reflexions

- More restricted definition of oligometastatic diseases
 - OMEC and Bertinoro projects
- Best available combination (CT +/- IO and/or targeted therapy)
- Increase duration of neoadjuvant treatment
 - Under reflection OMEC5
- Better selection: ctDNA?
- Less morbidity
 - Radiation, thermal ablation?





Renaissance trial: reflexions

- ESO-shangai 13
 - SCC, mostly metachronous, lung/LN
 - Best CT, IO regimen +/- local intervention
 - 89% RT
 - Median PFS: 15.3 vs. 6.4 mois , HR 0.26 (0.16-0.42)
 - Toxicity > grade 2 (47% vs. 41% p=0.538)

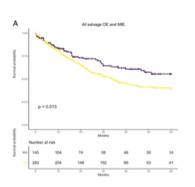
Renaissance trial: reflexions

- Dedicated trial for peritoneal carcinomatosis
 - Periscope II (Pr Van Sandick)
 - Convergence trial (Pr Jimmy SO Bok Yan)
 - Permits peritoneal directed treatment in addition
 - Restrictive criteria
 - Limit of PCI 7
 - Response to induction ttt
 - Optimal control group
 - Best combination available
 - Optimal surgery
 - Cytoreductive surgery+HIPEC

HIPEC according to PERISCOPE I

Oxaliplatin 460 mg/m² (41–42°C) 30 min,

Docetaxel 50 mg/m2 (37°C) 90min



Regardless of tumour stage

The best quality surgery

- Only curative surgery
- Prehabilitation and enhanced recovery
- In the good place
 - volume and adequate multidisciplinary team
- By a skilled surgeon
- With the optimal surgical technic
 - To improve short terms
 - And even long terms results

Birkmeyer et al , New England J Med 2003 Deroyar et al , J Clin Oncol 2013 Pasquier et al, Ann Surg 2016 Nuytens et al, JAMA Surg 2022 Markar et al, Ann Surg 2024

To operate or not operate: Personalized surgical approaches in the curative setting

Conclusion

- Surgery used to be the corner stone of treatment of oesogastric cancer
- Consistently challenged by the endoscopists and the oncologists
- Moved to a personalized surgical approach
- Concept of treatment response to tailor the approach: present and futur tools
- Molecular testing to provide personalize treatment but tumour heterogeneity: room for surgery
- Multidisciplinary Team Approach and Shared Decision-Making

Thank you for your attention

European Society for Medical Oncology (ESMO)

Via Ginevra 4, CH-6900 Lugano T. +41 (0)91 973 19 00 esmo@esmo.org

